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CHAPTER 1

Few examples

1.1. A body moves with a constant velocity

Assume that a body moves along a straight line with a constant velocity v, see fig.
1.1. Let x be the coordinate on the line and let t be the time. Let x(t) be the
coordinate of the body at the time t. Then

(1.1.1) x′(t) = v.

It is an equation: the unknown is the function x(t). It is a differential equation
since it involves the derivative of the unknown function. It is a differential equation
of order 1 since it involves the first derivative and does not involve higher order
derivatives. It is an ordinary differential equation (ODE) because the unknown
function depends on only one variable t. 1 Usually, though not always, this variable
in ODEs is the time.

Definition. A solution of an ODE is a function satisfying this equation and defined
on on open interval (a, b) (the case a = −∞ and/or b = ∞ is not excluded). The
set of all solutions on (a, b) is called the general solution on (a, b).

It is clear that equation (1.1.1) has infinitely many solutions defined on (−∞,∞),
namely

(1.1.2) x(t) = vt + C, C ∈ R.

It is easy to prove that there are no other solutions defined on (−∞,∞), so that
(1.1.2) is the general solution of (1.1.1). It is parameterized by a “free” constant
C ∈ R.

Certainly the reason for infinitely many solutions is the unknown initial position of
the body. If we know the location of the body at any fixed time t0 we will know
its location at any time t. Mathematically the initial position of the body is the
initial condition for equation (1.1.1), it is

(1.1.3) x(t0) = x0,

where t0 and x0 are given numbers. Substituting t = t0 to (1.1.2) we obtain

C = x0 − vt0

and consequently (1.1.1) has unique solution satisfying the initial condition (1.1.3):

x(t) = x0 + v(t− t0).

1if the unknown function depends on several variables and there are derivatives with respect
to ≥ 2 variables then the equation is called partial differential equation (PDE). An example of

PDE is the equation ∂2u
∂x2 + ∂2u

∂y2 = 0 with respect to the unknown function u = u(x, y).

7



8 1. FEW EXAMPLES

1.2. Simplest version of the two body problem

I hope that some of the students will have to solve, in few years, the following two
body problem: what to do if your girlfriend (boyfriend) is offered a good job in
Tel Aviv (or USA) and you – in Haifa, or vise a versa. I hope you will solve this
problem somehow. I also hope that you will not deal with a three body problem in
this sense.

In this course we will deal with the following two body problem: there are two
bodies on a straight line, the big one does not move and located all the time at
the point x = 0, the small body moves along the straight line under the force of
attraction to the big body. We assume that this force is F = F (x) > 0, where
x = x(t) is the coordinate of the small body at the time t, i.e. the force depends
on the distance between the bodies only. We also assume that the initial velocity
v0 of the small body is directed opposite to the force F . See fig. 1.2.

The principal questions to be answered are as follows: will the bodies meet or the
small body moves to ∞ as time t →∞? Is anything else possible?

To answer these and many other questions one has to solve the ODE describing
the movement of the small body. If m is its mass then f = f(x) = F (x)/m is its
acceleration and we obtain

(1.2.1) x′′(t) = −f(x(t)).

The sign − in the equation corresponds to the fact that the direction of the force is
opposite to the positive direction of the x-axes and consequently the acceleration
is negative. We obtain a second order ODE since the equation involved the second
derivative and does not involve higher order derivatives. In what follows we will
give a way of solving equations of this form. The equation has infinitely many
solutions because it does not contain information about initial position of the small
body and about its initial velocity. The initial conditions for the second order ODE
are conditions of the form

(1.2.2) x(t0) = x0, x′(t0) = v0,

where t0, x0 and v0 are given numbers. If the initial conditions (1.2.2) are fixed and
the function F (x) is “good enough” (in what follows we will explain what does it
mean) then we have uniqueness of solution of (4.5.1) in the following sense: two
solutions defined on the same time-interval t ∈ (a, b) and satisfying the same initial
conditions (1.2.2) are the same solution.

1.2.1. Particular case: a stone thrown up. In this case f(x) = g so we
have the equation

x′′(t) = −g.

This equation can be easily solved. The general solution defined for t ∈ R is

x(t) = C1 + C2t− 1
2
gt2, C1, C2 ∈ R.

It is parameterized by two constants C1, C2 which are uniquely determined by the
initial conditions (1.2.2). For example, if t0 = 0 then C1 = x0 and C2 = v0.
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1.2.2. Particular case: a rocket launched vertically up. In this case the
force is

F (x) =
kMm

x2

where x is the distance from the rocket to the center of the Earth, M is the mass
of the Earth, m is the mass of the rocket, and k is a certain gravitation constant.
See fig. 1.3. Consequently the acceleration is

f(x) =
kM

x2
.

Let R be the radius of the Earth. Then f(R) = kM
R2 . On the other hand we know

that f(R) is the acceleration at the surface of the Earth, therefore f(R) == g and
it follows kM = gR2. We obtain f(x) = gR2

x2 . Therefore the ODE describing the
movement of the rocket is as follows:

(1.2.3) x′′(t) = − gR2

x2(t)
,

where x(t) is the distance from the rocket to the center of the Earth at time t. If
the rocket is launched from the surface of the Earth with initial velocity v0 we have
the initial conditions x(t0) = R, x′(t0) = v0. Under which condition on v0 the
rocket will return to the Earth? Under which conditions it will reach the height
10000 km? Which velocity will it have at this height? Will something principally
change if in the gravitation law we had xr with r 6= 2 in the denominator? In what
follows we will answer all these and many other related questions.

1.3. Interest rate and interest yield

In 1998 for those who had a saving account in Bank of America the interest rate
was 6 % and the interest yield 6.18 % a year. What does it mean? 2

Assume you put to your saving account A dollars. How much money will be in
the account in a year, 1.06A or more? It should be more. If they give 6 % for
one year they must give 3 % for 1/2 year, i.e. in 1/2 year there should be 1.03A
dollars. And in 1/2 year more there should be 1.03A plus 3 % of 1.03A which gives
1.0609A. But you can count differently to get even more than that assuming that
you open a new account and put to it all what you had in the previous account
every 3 months, or better every month, every week, day, hour, minute, second.
The limit of this procedure is an ODE. If your account has x(t) dollars at tine t it
should have x(t)(1+0.06ε) dollars at time t+ε where t and ε are measures in years.
Therefore x(t + ε) = x(t) + 0.06εx(t). Write this in the form x(t+ε)−x(t)

ε = 0.06x(t)
and take the limit as ε → 0. We obtain the first order ODE

(1.3.1) x′(t) = 0.06x(t)

It is easy to check that it has solutions

x(t) = Ce0.06t, C ∈ R
and one can prove that there are no other solutions. We have the initial condition
x(t0) = A where t0 is the time the account was opened. This initial condition

2in 2013 the interest rate and the interest yield are the same 0.2 %.
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determines C = 1000e−0.06t0 . Therefore there is unique solution satisfying the
initial condition

x(t) = 1000e0.06(t−t0).

It means that in one year your account, when t− t0 = 1, your account should have

x(t0 + 1) = Ae0.06 ≈ 1, 0618A

dollars. It is 6.18 % more than the initial deposit A. This is why the interest yield
is 6.18 %.

1.4. Growth of population

If there are no wars or another crime then the growth (or decrease) of population
is described by the same equation as in section 1.3, the equation

(1.4.1) x′(t) = kx(t)

where x(t) is the number of citizens at time t (measured, for example, in years)
and k is a very important constant (if k > 0 the population increases, if k < 0 it
decreases). If b people a year die because of crime the equation is different:

(1.4.2) x′(t) = kx(t)− b.

To solve this equation let us note that one of solutions is

x∗(t) ≡ b

k
.

Note also that if x(t) is any solution then the function y(t) = x(t)− x∗(t) satisfies
the equation y′(t) = ky(t). Therefore x(t) − x∗(t) = Cekt for some C ∈ R. It
follows that the general solution of equation (1.4.2) is

x(t) =
b

k
+ Cekt, C ∈ R.

The constant C can be found from the initial condition x(t0) = x0 with given t0
and x0.

1.5. Abnormal growth of population

Is it possible that the velocity of the growth of population (of cats or bacterium, etc.)
is proportional to the square of the number of the members of population? Assume
it is so, then the number x(t) of the members of population changes according to
the equation

(1.5.1) x′(t) = kx2(t), k > 0.

This equation can be solved as follows. Note that any solution x(t) is a grow-
ing function because its derivative is positive for all t. Therefore there exists the
inverse function t(x), see fig. 1.4. According to the theorem on the derivative of
the inverse function we have

t′(x) =
1

kx2
.

Integrating we obtain

t(x) = − 1
kx

+ C
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for some constant C ∈ R. We can find C from the initial condition x(t0) = x0 or
equivalently t(x0) = t0. Substituting x = x0 we obtain C = t0 + 1

kx0
. Therefore

t(x) = − 1
kx

+ t0 +
1

kx0

and from here

x(t) =
1

k
(
t0 − t + 1

kx0

) .

We see that

x(t) →∞ as t → t0 +
1

kx0
.

It means that the number of members of population is infinite in a finite time. It
means that the velocity of the growth of population can be proportional to the
square of the members of population only for a finite time, smaller than 1

kx0
.

Returning to math language we can state the following: equation (1.5.1) has no
silutions satisfying the initial condition x(t0) = x0 and defined on an interval (a, b)
for any a < t0 and b > 1

kx0
.

1.6. Growth of population in the case of not enough food

Let x(t) be the number of fishes in a lake at time t. The function x(t) changes
according to equation x′(t) = f(x(t)) where f = f(x) is a certain function. What
we can say about the function f(x)? Certainly f(0) = 0. There is a number
A, corresponding to “full lake”, such that if x > A then there is not enogh food
and some fishes start to die. Therefore f(x) < 0 for x > A. If x < A there is
enough food and f(x) > 0. The simplest function satisfying the above conditions
is f(x) = kx(A− x), k > 0. We obtain the equation

(1.6.1) x′(t) = kx(t) (A− x(t)) .

It is a very important equation and later we will analyze it. Two solutions satisfying
the initial condition x(t0) = x0, one with x0 < A and one with x0 > A are showed
in fig. 1.5.

1.7. A fight between two armies

Assume that the loss of soldiers is proportional to the number of soldiers in the
enemy army and to the number or weapon in the enemy army. Assume also that
the number of weapon in each of the armies does not change during the fight (which
is certainly not the case for now-days fights, but could be so 300 years ago). Let w1

be the number of weapon in the first army, w2 the number of weapon in the second
army. Let s1 and s2 be the number of soldiers in the first and the second army in
the beginning of the fight. Assume

w2 = 2w1, s2 =
1
2
s1.

Which of the armies will win the fight? In other words, what is more important -
weapon of soldiers under the assumptions above?
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To formulate the question mathematically denote by x1(t) and x2(t) the number of
soldiers in the first and the second army at time t. Then

x′1(t) = −kw2x2(t)

x′2(t) = −kw1x1(t).
(1.7.1)

Here k is a certain positive constant. We obtain a system of ODEs: two ODEs for
two unknown functions x1(t) and x2(t). There are infinitely many solutions, but
there is a unique solution satisfying our initial conditions

x1(t0) = s1, x2(t0) = s2.

This system can be solved, but to answer the question which of the armies will win
the fight it is not necessary to solve it, it is enough to understand the phase portrait
of the system. What is the phase portrait will be explained later. From the phase
portrait it is clear that there are three possibilities: (a) there exists t1 such that
x1(t), x2(t) > 0 for all t0 < t < t1 and x1(t1) > 0, x2(t1) = 0; (b) there exists t1
such that x1(t), x2(t) > 0 for all t0 < t < t1 and x1(t1) = 0, x2(t1) > 0; and (c)
there exists t1 such that x1(t), x2(t) > 0 for all t0 < t < t1 and x1(t1) = x2(t1) = 0.
In case (a) the first army wins, in case (b) the second army wins. If one understands
the phase portrait it is easy to determine under which relation between w1, w2, s1, s2

one has the case (a), (b), or (c). The answer does not depend on the constant k.

1.8. Exercises

1. How much money you will have in your pension bank account at the age 70 if
you deposit 1000 shekels a year, the interest rate is all the time 2 % a year, and the
bank counts your (a) with the interest yield (b) without interest yield. Assume
that the interest of a pension bank account is not subject to state taxes.

2. Draw the graph of the solution of equation (1.4.2) satisfying the initial condition
x(0) = 106 for the following values of the parameters k and b:

(a) k = 0.02, b = 104 (b) k = 0.01, b = 2 · 104 (c) k = −0.02, b = 1000

3. Follow the argument with the inverse function in section 1.5 to find the maximal
time-interval for the solution of the equation x′(t) = x2(t) + 1 satisfying the initial
condition x(0) = 0. Draw the graph of this solution.

4. Follow the argument with the inverse function in section 1.5 to draw in the
same (t, x)-plane the graph of 6 functions: solutions of the equation x′(t) = x2(t)
satisfying the initial conditions:
x(0) = 1, x(1) = 1, x(2) = 1, x(0) = −1, x(1) = −1, x(2) = −1.

5. Let (t1, x1) be the coordinates of the inflection point (nikudat pitul) in the graph
of the solution of equation (1.6.1) showed in fig. 1.5. Find x1.

6. Write down a system of ODEs for the rotation of the Earth about the Sun.



CHAPTER 2

Existence theorem, uniqueness theorem
and theorem on prolongation of solutions

for first order ODEs

2.1. Existence theorem

Consider the general form of first order ODE with given initial condition:

(2.1.1) x′ = f(t, x), x = x(t)

(2.1.2) x(t0) = x0.

Remind that by definition a solution of ODE is a function satisfying this equation
and defined on an open interval in the t-axes. Does (2.1.1) have at least one solution
satisfying (2.1.2)? Some property of the function f(t, x) should b required for the
positive answer. This property is very simple.

Theorem 2.1.1 (Existence theorem). Assume that the function f(t, x) is con-
tinuous in some neighborhood of the point (t0, x0). Then (2.1.1) has a solution
satisfying (2.1.2).

The proof is not simple and will be given in the end of the course if time allows.

Remark 2.1.2. Note that if (2.1.1) has a solution x(t) satisfying (2.1.2) then
it has infinitely many solutions satisfying the same initial condition. In fact, let I
be the interval in the t-axes on which x(t) is defined. Then t0 ∈ I. Obviously the
restriction of x(t) to any smaller interval Ĩ ⊂ I containing the point t0 is a solution
of the same equation satisfying the same initial condition. See fig. 2.1.

The existence theorem gives no information on the maximal interval of definition
of a solution of (2.1.1) satisfying (2.1.2). Even if f(t, x) is continuous and moreover
infinitely-differentiable in the whole (t, x)-plane the maximal interval might be very
small.

Example 2.1.3. Let x0 > 0 and k > 0. The maximal interval of definition
of a solution of equation x′ = kx2 satisfying the initial condition x(0) = x0 is(
−∞, 1

kx0

)
(see section 1.5).

Example 2.1.4. Let a > 0. The maximal interval of definition of a solution of
equation x′ = a(x2 + 1) satisfying the initial condition x(0) = 0 is

(− π
2a , π

2a

)
(see

exercise 3, section 1.8).

13
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On the other hand there are many cases that the maximal interval is the whole
t-axes. For example it is so for the equations (1.1.1), (1.4.1), (1.4.2) whatever is the
initial condition (and the parameters of the equations). In Chapter 3 we will show
that the maximal interval of definition of solution of equation (1.6.1) satisfying the
initial condition x(0) = x0 is the whole t-axes if and only if 0 ≤ x0 ≤ A.

2.2. Uniqueness theorem

One could ask if equation (2.1.1) has unique solution satisfying the initial condition
(2.1.2). In view of Remark 2.1.2 it is not a good question. In view of the same
remark a good question is as follows:

Question 2.2.1. Let x(t) and x̃(t) be two solutions of the same equation (2.1.1)
satisfying the same initial condition (2.1.2) and defined on intervals I and Ĩ. Is it
true that x(t) = x̃(t) for any t ∈ I ∩ Ĩ?

The simplest sufficient condition is as follows.

Theorem 2.2.2 (Uniqueness theorem 1). Assume that a function f(t, x) is
continuous in some neighborhood U of the point (t0, x0) and differentiable with
respect to x at any point of U . Assume also that the derivative ∂f

∂x is continuous
function in U . Then the answer to Question 2.2.1 is positive.

The assumptions of this theorem can be weakened. We need the following definition.

Definition 2.2.3. We will say that a function f(t, x) satisfies the Lipschitz
condition at the point (t0, x0) with respect to x if there exists a neighborhood W
of (t0, x0) and a constant C > 0 such that

(2.2.1) |f(t, x1)− f(t, x2)| ≤ C|x1 − x2| for any points (t, x1), (t, x2) ∈ W.

Theorem 2.2.4 (Uniqueness theorem 2). Assume that a function f(t, x) is
continuous in some neighborhood U of the point (t0, x0) and satisfies the Lipschitz
condition with respect to x at the point (t0, x0). Then the answer to Question 2.2.1
is positive.

Theorem 2.2.4 is stronger than Theorem 2.2.2: the assumptions of Theorem 2.2.2
imply the Lipschitz condition.

Theorem 2.2.2 from Theorem 2.2.4. Let U be the neighborhood of (t0, x0) in
Theorem 2.2.2. For small enough ε > 0 the square

D = {(t, x) : t ∈ [t0 − ε, t0 + ε], x ∈ [x0 − ε, x0 + ε]}
belongs to U . Since the function ∂f

∂x is continuous in U it is bounded in D, i.e. there
exists C such that |∂f(t,x)

∂x | < C for any (t, x) ∈ D. For any points (t, x1), (t, x2) ∈ D
we have

|f(t, x1)− f(t, x2)| =
∣∣∣∣
∫ x2

x1

∂f

∂x
dx

∣∣∣∣
and it follows that (2.2.1) holds for any neighborhood W of (t0, x0) which is con-
tained in D. Q.E.D.

Example 2.2.5. It is easy to see that the function f(x) = |x| satisfies the
Liptschitz condition at x0 = 0, but it is not differentiable at x0 = 0.
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Example 2.2.6. The continuous function f(x) =
√
|x| does not satisfy the

Liptschitz condition at x0 = 0. In fact, if the Liptschitz condition was valid we
would have a constant C such that

√
x ≤ Cx for sufficiently small x > 0 ( tanking

x1 = 0, x2 = x > 0). Certainly such C does not exist.

The next example shows that if the Liptschitz condition is not valid the answer to
Question 2.2.1 on uniqueness might be negative.

Example 2.2.7. It is easy to check that the equation x′ =
√
|x| has solutions

(a) x(t) ≡ 0 (b) x(t) =

{
0, t ≤ 0
1
4 t2, t ≥ 0

(c) x(t) =

{
− 1

4 t2, t ≤ 0
1
4 t2, t ≥ 0

See fig. 2.2. Each of this solutions satisfies the condition x(0) = 0.

If time allows we will prove the uniqueness Theorem 2.2.4 along with the existence
Theorem 2.1.1 in the end of the course.

2.3. Illustrating example. From home to work with a stop

.
I live in 4km from Technion. Assume I go home from Technion by a straight line
with velocity v = v(x) which depends on my current place x = x(t) only as it is
showed in fig. 2.3. Will I reach Mirkaz Ziv in a finite time? If yes, will I reach my
home in a finite time or maybe I will be “freezed” at Ziv since my velocity there
is 0? One can think about several solutions showed at fig. 2.4.a (I will never reach
Ziv), fig. 2.4.b (I will reach Ziv and immediately after that will go home), at fig.
2.4.c (I will reach Ziv and will not move further), at fig. 2.4.d (I will reach Ziv, will
spend night there, after that will go home). Which of these solutions holds?

We have the equation x′ = f(x) where f(x) is a continuous function in fig. 2.3.
We have f(2) = 0 and it follows that the equation has the solution x(t) ≡ 2 which
means that I stay in Ziv all my life. This constant solution x(t) ≡ 2 does not satisfy
the initial condition x(0) = 0 corresponding to the fact that I start at Technion. But
the existence of this constant solution (showed by dashed line in the figures) implies
that solutions at fig. 2.4.b, 2.4,c, 2.4.d are impossible provided we have uniqueness.
In fact, for any of these solutions there exists a time t1 such that x(t1) = 2 and we
also have x(t1) = 2 because x(t) = 2 for all t. Therefore we have contradiction to
the uniqueness theorem at the point (t = t1, x = 2).

It follows that if the function f(x) has continuous derivative then I will never reach
Ziv (see Theorem 2.2.2). If it is not differentiable, but satisfies the Liptschitz
condition I will neither reach Ziv (see Theorem 2.2.2). See fig. 2.5.

What happens if f(x) satisfies the the Liptschitz condition at all points except the
point x = 2? Take an example f(x) = 2

√
|4− 2x|, see fig. 2.6. This example

is almost the same as Example 2.2.7. Like in that example any of the solutions
in figures fig. 2.4.b, 2.4,c is possible; fig. 2.4.d is also possible (see exercise 3
in section 2.5). Which of them holds? The couple (equation, initial condition)
does not know about that! And what about fig. 2.4.a, is it possible in this case?
A bit of analysis based on the inverse function, like in section 1.5 shows that it is
impossible: if f(x) = 2

√
|4− 2x| I will reach Ziv in a finite time.
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2.4. Theorem on prolongation of solutions

Let x(t) be a solution of the equation x′ = f(t, x(t)) defined on the time-interval
t ∈ (a, b). Does it have a prolongation to an interval (ã, b̃) containing (a, b)? Pro-
longation means a solution x̃(t) of the same equation defined on (ã, b̃) such that
x(t) is the restriction of x̃(t), i.e. x(t) = x̃(t) for any t ∈ (a, b). We already had
several examples showing that in some cases a solution x(t) cannot be prolonged,
i.e. the interval of its definition is maximal possible.

If there is a prolongation of x(t) defined on (a, b) to (a, b̃) with b̃ > b we will say
that it is prolongation to the right. Similarly if there is a prolongation to (ã, b) with
ã < a we will say that it is prolongation to the left. See fig. 2.7.

It is clear that there is no prolongation to the right if limt→bx(t) = ±∞ and there
is no prolongation to the left if limt→ax(t) = ±∞. See fig. 2.8. Are there other
obstacles for prolongation or it is the only reason? It turns out that there are no
other obstacles for prolongation.

Theorem 2.4.1 (Theorem on prolongations of solutions to the right). Let x(t)
be a solution of the equation x′ = f(t, x) defined on the interval t ∈ (a, b). Assume
that b is a finite number and assume that the function f(t, x) is continuous in a
neighborhood of any point of the vertical line {t = b,∀x} and satisfies the Liptschitz
condition at any point of this line. Then the following holds:

1. There exists limt→bx(t) = B where B is either a finite number or B = ±∞.

2. If B is a finite number then the solution x(t) has a prolongation to the right.

Note that the first statement is not obvious at all: there are many differentiable
functions x(t) defined on (a, b) such that limt→b x(t) does not exist, see fig. 2.9.
But such functions cannot be solutions of the ODE x′ = f(t, x) if the assumptions
of Theorem 2.4.1 hold.

Certainly for prolongations to the left we have a similar theorem.

Theorem 2.4.2 (Theorem on prolongations of solutions to the left). Let x(t)
be a solution of the equation x′ = f(t, x) defined on the interval t ∈ (a, b). Assume
that a is a finite number and assume that the function f(t, x) is continuous in a
neighborhood of any point of the vertical line {t = a,∀x} and satisfies the Liptschitz
condition with respect to x at any point of this line. Then the following holds:

1. There exists limt→ax(t) = A where A is either a finite number or A = ±∞.

2. If A is a finite number then the solution x(t) has a prolongation to the left.

Below is the proof of Theorem 2.4.1 using the existence and uniqueness theorems
and much of the INFI staff. The proof is illustrated in fig. 2.10. I leave some
details of the proof to the reader who knows INFI well. All other students should
understand the idea. The proof of Theorem 2.4.2 is similar.

Proof of the first statement of Theorem 2.4.1. Assume that the limit of
x(t) as t → b does not exist. Then there is an infinite sequence ti → b such that
limi→∞x(ti) → B1 and an infinite sequence si → b such that limi→∞x(si) → B2

where B1 6= B2. Here B1 and B2 are either finite numbers or ±∞. Take any B in
the interval (B1, B2). Since f(t, x) is continuous at the point (b, B) by the existence
theorem the same equation has a solution x̂(t) satisfying the condition x̂(b) = B.
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This solution x̂(t) is defined on some interval t ∈ (b− ε, b + ε). Now, one can prove
that there exists a sequence ri → b such that x(ri) = x̂(ri) and x(ri) → B so that
the point (ri, x(ri)) tends to the point (b,B). By the uniqueness theorem and the
assumptions of Theorem 2.4.1 we must have x(t) = x̂(t) for any t ∈ (b− ε, b). It is
impossible. Q.E.D.

Proof of the second statement of Theorem 2.4.1. Let limt→bx(t) = B
where B is a finite number. By the existence theorem the same equation has a
solution x̂(t) defined on some interval t ∈ (b− ε, b + ε). Consider the function

x̃(t) =

{
x(t), t ∈ (a, b)
x̂(t), t ∈ [b, b + ε)

.

It is easy to prove that x̃(t) is a solution of the same equation. It is the prolongation
of the solution x(t) to the right.

2.5. Exercises

1. Modify the equation and/or the initial condition in section 1.5 so that the max-
imal interval of definition of a solution satisfying the initial condition is (−1/2,∞).

2. Assume that a function f(x) is differentiable and has continuous derivative on
the set R − {x1, , ...xn} (at any point except a finite number of points). Assume
that limx→x+

i
f ′(x) = ai and limx→x−i

f ′(x) = bi 6= ai for i = 1, ..., n (limits from
the left and from the right are different). Here ai and bi are finite number. Is it
true that in this case f(x) satisfies the Liptschitz condition at all points including
the points x1, ..., xn? Prove or give a counterexample.

3. Prove that if x(t) is a solution of an equation x′ = f(x) then x̃(t) = x(t − a)
is also a solution of the same equation, for any a. Using this fact prove that the
equation x′ =

√
|x| has infinitely many solutions satisfying the condition x(0) = 0

(except solutions given in Example 2.2.7) and draw the graphs of some of them.

4. Within the illustrating example in section 2.3 prove that if f(x) = 2
√
|4− 2x|

then I will reach Ziv in a finite time.

5. Explain why the possibility to stop a car at a traffic red light does not contradict
to the uniqueness theorem. Namely assume the following:
at time t0 = 0 the distance to the traffic light is 0.02km (x(0) = 0.02) and the
velocity is 50km/h (x′(0) = 50);
one starts to brake (x′′ = −a) so that the acceleration a is negative and constant.

Find a and time t1 such that the car stops at the traffic light in time t1, i.e.
x(t1) = 0, x′(t1) = 0. Determine how the velocity depends on the distance to the
traffic light, i.e. find a function f(x) such that the solution of the equation x′′ = −a
with the a that you found implies x′ = f(x). Certainly you will have f(0) = 0 so
that the equation x′ = f(x) has a constant solution x(t) ≡ 0. This means that there
is no uniqueness. Explain why it does not contradict to the uniqueness Theorem
2.2.4.

6. (*) Cover all details of the proof of Theorem 2.4.1. The assumption that f(t, x)
satisfies the Liptschitz condition at all points of the vertical line ` = {t = a,∀x}
can be replaced by the assumption that f(t, x) satisfies the Liptschitz condition at
points of some subset S ⊂ ` having a certain property. Which property?





CHAPTER 3

Autonomous first order ODEs: x′ = f(x)

As it was explained in the previous chapter, the simplest class of functions f(x)
satisfying the Liptschitz condition at all points x ∈ R is the class of differentiable
for all x functions with continuous derivative.

Notation. The class of functions f(x) which are twice differentiable at any x ∈ R
and the derivative f ′(x) is continuous for any x ∈ R is denoted C1(R).

In all theorems in this chapter we will assume that f(x) ∈ C1(R) in order to use
the uniqueness theorem.

In all theorems in this chapter the condition f(x) ∈ C1(R)
can be replaced by a weaker condition that f(x) satisfies
the Liptschitz condition at any point x ∈ R.

3.1. Non-constant solutions of first order autonomous ODEs
are strictly monotonic functions

Theorem 3.1.1. Let f(x) ∈ C1(R). Any non-constant solution x(t) of the
equation x′(t) = f(x(t)) defined on any interval (a, b) satisfies x′(t) 6= 0, t ∈ (a, b).
Consequently any solution is a strictly monotonic function (strictly increasing or
strictly decreasing).

Example 3.1.2. None of the functions t2 and t3 defined on an interval con-
taining the point t = 0 can be a solution of an equation x′ = f(x) ∈ C2(R).

Proof. Assume, to get contradiction, that x′(t1) = 0, where t1 ∈ (a, b). Let
x1 = x(t1). Then f(x1) = f(x(t1)) = 0. It follows that the equation has the
constant solution x̃(t) ≡ x1, t ∈ R. This constant solution x̃(t) and the solution
x(t) take the same values at the point t1: x(t1) = x̃(t1) = x1. By the uniqueness
theorem x(t) = x̃(t) for any t ∈ (a, b). Therefore x(t) is a constant solution:
contradiction.

3.2. Constant solutions and singular (equilibrium) points

The constant solutions of autonomous equations x′ = f(x) are very important.
They correspond to singular = equilibrium points defined as follows.

Definition 3.2.1. A point x∗ ∈ R is a singular, or equilibrium point of the
equation x′ = f(x) if f(x∗) = 0.

The following statement is obvious:

Proposition 3.2.2. The equation x′ = f(x) has a constant solution x(t) ≡ x∗,
t ∈ (a, b) if and only if x∗ is a singular point of this equation.

19
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3.3. The case of initial condition between two singular points:
qualitative analysis

Let us obtain a qualitative information about the solution of equation x′ = f(x) ∈
C1(R) satisfying the initial condition x(t0) = x0 where x0 satisfies the following
assumption:

x∗1 < x0 < x∗2 where x∗1 and x∗2 are singular points

there are no singular points between x∗1 and x∗2
(3.3.1)

Note that this assumption implies that we have one of the following possibilities:

either f(x) > 0 for all x ∈ (x∗1, x
∗
2) or f(x) > 0 for all x ∈ (x∗1, x

∗
2).

Theorem 3.3.1. Let f(x) ∈ C1(R) and let x(t) be the solution of the equa-
tion x′ = f(x) satisfying the initial condition x(t0) = x0 and and defined on
maximal possible interval t ∈ (t−, t+). Assume that the point x0 satisfies the as-
sumption (3.3.1). Then the following holds:

1. t− = −∞ and t+ = ∞.

2. If f(x) > 0 for x ∈ (x∗1, x
∗
2) then the solution x(t) is a strictly increasing function

and limt→∞x(t) = x∗2, limt→−∞x(t) = x∗1.

3. If f(x) < 0 for x ∈ (x∗1, x
∗
2) then the solution x(t) is a strictly decreasing function

and limt→∞x(t) = x∗1, limt→−∞x(t) = x∗2.

Example 3.3.2. The equation x′ = (x2 − 1)(x2 − 9) has 4 singular points x =
±1, x = ±3. By Theorem 3.3.1 the graphs of solutions of this equation satisfying
the initial conditions

(a) x(0) = −2, (b) x(0) = 0, (c) x(0) = 2

have the form showed in fig. 3.1.

Proof of Theorem 3.3.1. We will consider the case f(x) > 0, x ∈ (x∗1, x
∗
2). The

proof in the case f(x) < 0, x ∈ (x∗1, x
∗
2) is similar.

In this case by Theorem 3.1.1 the solution x(t) is an increasing function at any point
t ∈ (t−, t+). Let us show that x(t) is a bounded function: x∗1 < x(t) < x∗2, t ∈
(t−, t+). In fact, if it was not so we would have a point t1 such that x(t1) = x∗1 or a
point t2 such that x(t2) = x∗2. Since the equation has constant solutions x(t) ≡ x∗1
and x(t) ≡ x∗2, it contradicts to the uniqueness theorem.

Thus the solution x(t) is an increasing function and x∗1 < x(t) < x∗2, t ∈ (t−, t+).
It follows that there are limits limt→t+x(t) = B ≤ x∗2 and limt→t−x(t) = A ≥ x∗1.
Assume that t+ is a finite number. Then by the prolongation Theorem 2.4.1 the
solution x(t) can be prolonged to an interval (t−, t+ + ε), ε > 0 which contradicts
to the fact that (t−, t+) is the maximal possible interval on which the solution with
the initial condition x(t0) = x0 is defined. Therefore t+ = ∞. In the same way the
prolongation Theorem Theorem 2.4.2 implies t− = −∞.

It remains to prove that B = x∗2 and A = x∗1. The proof is as follows. Assume,
to get contradiction, that B < x∗2. Then the function f(x) takes strictly positive
values as x ∈ [x0, B]. Consequently there exists ε > 0 such that f(x) > ε for
x ∈ [x0, B]. Since x(t) ∈ [x0, B] for t ∈ (t0,∞) and x′(t) = f(x(t)) we obtain that
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x′(t) > ε for t ∈ (t0,∞). It follows limt→∞x(t) = ∞ which is a contradiction.
Therefore B = x∗2. The proof that A = x∗1 is similar.

3.4. The case of initial condition between two singular points:
solving the equation

The equation x′ = f(x) can be solved exactly in the same way as in section 1.5,
using the inverse function.

Assume that we have the initial condition x(t0) = x0 and x0 is between two singular
points x∗1, x

∗
2 so that there are no other singular points between x∗1 and x∗2. We know

all qualitative information about x(t) from Theorem 3.3.1. See fig. 3.2.a for the case
f(x0) > 0 and consequently f(x) > 0 for x ∈ (x∗1, x

∗
2). since x(t) is an increasing

function the inverse function t(x) is well-defined. see fig. 3.2.b. We have, by the
theorem on the derivative of inverse function,

t′(x) =
1

f(x)
.

We also have
t(x0) = x0.

It follows

(3.4.1) t(x) = t0 +
∫ x

x0

ds

f(s)
.

In the case f(x0) < 0 and consequently f(x) < 0 for x ∈ (x∗1, x
∗
2) we have exactly

the same formula by the same argument.

Can we say that (3.4.1) is a formula of solution? It is, even though it is a formula for
the inverse function f(x) rather than for x(t) and even though the formula contains
an integral which not always can be computed in elementary functions (depends on
f(x)). In some cases the integral can be expressed in elementary functions, then
we have a formula for the inverse function t(x) without integrals. In some cases
knowing the formula for t(x) we can obtain a formula for x(t).

Example 3.4.1. By Theorem 3.3.1 the solution of the equation x′ = sin(x)
satisfying the initial condition x(10) = 3π

2 has the graph showed in fig. 3.3. The
solution x(t) satisfies the formula

t(x) = 10 +
∫ x

3π
2

ds

sin(s)
.

This formula cannot be simplified, we cannot find a formula for x(t). Nevertheless,
we can compute (using basic computer programs) the time t for which the solution
x(t) takes any given value. For example

x(t1) =
7π

4
⇔ t1 = 10 +

∫ 7π
4

3π
2

dx

sinx
.

From the graph of x(t) we see that we must have t1 < 10. It corresponds to the
fact that sinx is negative for x ∈ [ 3π

2 , 7π
4 ]. We also have

x(t2) =
5π

4
⇔ t2 = 10 +

∫ 5π
4

3π
2

dx

sinx
.
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From the graph of x(t) we see that we must have t1 > 0. It corresponds to the
fact that sinx is negative for x ∈ [ 5π

4 , 3π
2 ] and the upper limit in the last integral

is smaller than the bottom limit. It is nicer to write down the same integral in the
form

t2 = 10−
∫ 3π

2

5π
4

dx

sinx
or t2 = 10 +

∫ 3π
2

5π
4

dx

|sinx| .

Example 3.4.2. The graph of solution x(t) of the equation x′ = x2−5 satisfying
the initial condition x(3) = 2 is showed in fig. 3.4 (according to Theorem 3.3.1).
We have

t(x) = 3 +
∫ x

2

ds

s2 − 5
.

The integral can be computed:
∫

ds

s2 − 5
=

1
2
√

5
ln

∣∣∣∣∣
s−√5
s +

√
5

∣∣∣∣∣ .

Therefore

t(x) = 3 +
1

2
√

5

(
ln

∣∣∣∣∣
x−√5
x +

√
5

∣∣∣∣∣− ln|R|
)

, R =
2−√5
2 +

√
5
.

We know (and it is very important!) that x(t) ∈ (−√5,
√

5). It allows to write a
formula without absolute value:

t = 3 +
1

2
√

5
ln

(√
5 + 2√
5− 2

·
√

5− x√
5 + x

)
.

From here it is easy to obtain an explicit formula for x(t):

x(t) =
√

5 ·
√

5 + 2− (
√

5− 2)exp
(
2
√

5(t− 3)
)

√
5 + 2 + (

√
5− 2)exp

(
2
√

5(t− 3)
) .

3.5. Inflection points

An inflection point of a function x(t) is a point t1 where it changes from convex to
concave or visa a versa. They always satisfy the condition x′′(t1) = 0.

Theorem 3.5.1. Let t1 be an inflection point of a non-constant solution x(t)
of equation x′ = f(x) ∈ C1(R). Let x1 = x(t1). Then f(x1) = 0.

Proof. We have x′′(t1) = 0. On the other hand

x′′(t) = (x′(t))′ = (f(x(t)))′ = f ′(x(t)) · x′(t)
and substituting t = t1 we obtain f ′(x1) · x′(t1) = 0. By Theorem 3.1.1 we have
x′(t1) 6= 0. Therefore f ′(x1) = 0.

Let us show how this theorem can be used.

Example 3.5.2. Consider, like in Example 3.4.1, the solution x(t) of the equa-
tion x′ = sin(x) satisfying the initial condition x(10) = 3π

2 , see fig. 3.3. Let us
find all inflections points in the graph of x(t). By Theorem 3.5.1, if (t1, x1) is an
inflection point in the graph of x(t) then cosx1 = 0. Therefore x1 = π/2 + πk. But
we know that x(t) takes values between π and 2π only. Therefore there is only one
inflection point with x1 = 3π/2. We know (it initial condition) that if x(t1) = 3π/2
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then t1 = 10. Therefore the graph of x(t) contains one and only one inflection point
with coordinates t1 = 10, x1 = 3π/2.

Example 3.5.3. Consider, like in Example 3.4.2, the solution x(t) of the equa-
tion x′ = x2−5 satisfying the initial condition x(3) = 2, see fig. 3.4. Let us find all
inflections points in the graph of x(t). By Theorem 3.5.1, if (t1, x1) is an inflection
point in the graph of x(t) then x1 = 0. It follows that the graph of x(t) contains
one and only one inflection point with the coordinates

t1 = 3 +
∫ 0

2

dx

x2 − 5
x1 = 0.

Computing the integral we obtain

t1 = 3 +
1

2
√

5

(
1 + ln

√
5 + 2√
5− 2

)
, x1 = 0.

3.6. Solving the equation x′ = f(x)

The relation (3.4.1) between t and x holds for any solution of the equation
x′ = f(x) (not only in the case that x0 is between two singular points) by exactly the
same argument with the inverse function. The inverse function is defined because
any solution is a monotonic function. Thus for any solution x(t) we have

(3.6.1) t = t0 +
∫ x

x0

ds

f(s)
.

This equation holds for all t ∈ (a, b) and x = x(t) where (a, b) is the interval on
which the solution x(t) is defined.

3.7. The case x0 > x∗ where x∗ is the maximal singular point
or x0 < x∗ where x∗ is the minimal singular point

The following theorem is illustrated in fig.3.5.

Theorem 3.7.1. Let f(x) ∈ C1(R) and let x(t) be the solution of the equa-
tion x′ = f(x) satisfying the initial condition x(t0) = x0 and and defined on
maximal possible interval t ∈ (t−, t+).

1. Assume that x0 > x∗ where x∗ is the maximal singular point and f(x0) > 0
(and consequently f(x) > 0 for all x > x∗). Then t− = −∞, the solution x(t) is
an increasing function, limt→−∞ x(t) = x∗, limt→t+ x(t) = ∞ and

t+ = t0 +
∫ ∞

x0

dx

f(x)
.

2. Assume that x0 > x∗ where x∗ is the maximal singular point and f(x0) < 0
(and consequently f(x) < 0 for all x > x∗). Then t+ = ∞, the solution x(t) is a
decreasing function, limt→∞ x(t) = x∗, limt→t− x(t) = ∞, and

t− = t0 +
∫ ∞

x0

dx

f(x)
= t0 −

∫ ∞

x0

dx

|f(x)|
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3. Assume that x0 < x∗ where x∗ is the minimal singular point and f(x0) < 0
(and consequently f(x) < 0 for all x < x∗). Then t− = −∞, the solution x(t) is a
decreasing function, limt→−∞ x(t) = x∗, limt→t+ x(t) = −∞, and

t+ = t0 +
∫ −∞

x0

dx

f(x)
= t0 −

∫ x0

−∞

dx

f(x)
= t0 +

∫ x0

−∞

dx

|f(x)|
4. Assume that x0 < x∗ where x∗ is the minimal singular point and f(x0) > 0
(and consequently f(x) > 0 for all x < x∗). Then t+ = ∞, the solution x(t) is an
increasing function, limt→∞ x(t) = x∗, limt→t− x(t) = −∞, and

t− = t0 +
∫ −∞

x0

dx

f(x)
= t0 −

∫ x0

−∞

dx

f(x)

In cases 1. and 3. both possibilities t+ = ∞ and t+ is a finite number might hold;
in cases 2. and 4. both possibilities t− = −∞ and t− is a finite number might hold.
It depends on the convergence of the integrals.

Proof. We will prove only the first statement (fig. 3.5, a). The proof of the
other statements is similar.
The proof of the statements that x(t) is an increasing function, that t− = −∞ and
limt→−∞x(t) = x∗ is similar to the proof of Theorem 3.3.1.
Let us prove that limt→t+x(t) = ∞ either in the case that t+ is finite or in the case
t+ = ∞. If t+ is finite it follows from the prolongation Theorem 2.4.1. For the case
t+ = ∞ the proof is as follows. Assume, to get contradiction, that x(t) → B < ∞
as t → ∞. Consider the function f(x) on the closed interval [x0, B]. There exists
ε > 0 such that f(x) > ε for x ∈ [x0, B]. It follows that x′(t) > ε for all t ∈ [0,∞).
Therefore x(t) →∞ as t →∞: contradiction.
It remains to prove that t+ = t0 +

∫∞
x0

dx
f(x) . To obtain it, we use the fact that

x(t) →∞ as t → t+ and take the limit in (3.6.1) as t → t+.
¤

3.8. The case that there are no singular points

Exactly in the same way we can prove the following theorem illustrated in fig. 3.6.

Theorem 3.8.1. Let f(x) ∈ C1(R) such that f(x) 6= 0 for any x ∈ R. let x(t)
be the solution of the equation x′ = f(x) satisfying the initial condition x(t0) = x0

and and defined on maximal possible interval t ∈ (t−, t+).

1. If f(x) > 0 for all x then x(t) is an increasing function,
limt→t+ x(t) = ∞, limt→t− x(t) = −∞, and

t+ = t0 +
∫ ∞

x0

dx

f(x)
,

t− = t0 +
∫ −∞

x0

dx

f(x)
= t0 −

∫ x0

−∞

dx

f(x)
.
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2. If f(x) < 0 for all x then x(t) is a decreasing function,
limt→t+ x(t) = −∞, limt→t− x(t) = ∞, and

t+ = t0 +
∫ −∞

x0

dx

f(x)
= t0 −

∫ x0

−∞

dx

f(x)
= t0 +

∫ x0

−∞

dx

|f(x)| ,

t− = t0 +
∫ ∞

x0

dx

f(x)
= t0 −

∫ ∞

x0

dx

|f(x)| .

In each of these cases any of the possibilities (a) both t+ and t− are finite, (b)
t+ = ∞, t− = −∞ (c) t+ = ∞ , t− is finite, (d) t− = −∞, t+ is finite might
hold, it depends on the convergence of the integrals as x →∞ and x → −∞.

3.9. Phase portrait

Given equation of the form x′ = f(x) it is worth to draw its phase portrait. It is
a straight line = the x-axes endowed with marked singular points, arrows between
them, an arrow to the right from the maximal singular point, and an arrow to the
left of the minimal singular point. Each arrow corresponds to increase of time. See
fig. 3.7.

A phase portrait gives almost complete qualitative information about any solution.
One should remember that we proved that

any solution of equation of the form x′ = f(x) ∈ C1(R) is a monotonic
function which tends, as t → t+ or t → t− either to one of the singular
point, or to ∞ or to −∞.

Consider for example the phase portrait in fig. 3.7.(a) Let x(t) be the solution
satisfying the initial condition x(t0) = x0. We see from the phase portrait that if
solutions depend on x0 as it showed in fig. 3.7.,b. The only qualitative information
which does not follow from the phase portrait is the question about t+ (is it finite
or not) if x0 > 6 and about t− (is it finite or not) if x0 < 1.

3.10. Optimization by feedback versus rigid plan. Catastrophes

In this section there is a nice illustration, in terms of ODES, of the following
universal life principle:

optimization by rigid plan leads to a catastrophe whereas optimization
by feedback might give very good results.

The math illustration below is taken from the book “Catastrophe theory” by
V. Arnol’d. It is about catching fishes in a lake. One can replace fishes and lake by
certain words related to business, politics, family relations, love, studies, anything
else. Parallel with fishes in a lake I will give the same illustration in terms of love
between a boy and a girl, let us call then λ (girl) and µ (boy).

As we discussed in section 1.6, the simplest equation for multiplication of fishes in
a lake is

(3.10.1) x′ = x(1− x), x = x(t)

where t is time (for example in years) and x(t) is the number of fishes in the lake at
time t. Certainly it holds if people do not catch fishes. The phase portrait and the
graph of solution with the initial condition x(0) ∈ (0, 1) is showed in fig. 3.8. The
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singular point x∗ = 1 corresponds to full lake (the number 1 stands, for example
for million fishes).

The same equation (3.10.1) might describe the level x(t) of love between λ and
µ. The singular point x = 0 corresponds to the constant solution “no love all the
time” and the singular point x = 1 is the level of love of Romeo and Julietta. The
inflection point in the graph of the love (after which the love still increases, but
not as fast as before) might correspond to a certain event in their relations (for
example the marriage). Equation (3.10.1) might hold only if λ and µ do nothing
against their love (µ does not leave λ to meet with his friends, λ does not speak
with her mother by telephone more time than it is OK with µ, etc. ). It will be so
if they live in a desert island; for if not they do something against their love and it
is like fishing in the lake.

Therefore let us consider the realistic case that people catch fishes from the lake
and λ and µ do something against their life. Let us discuss a rigid plan: people fix
that they will catch fishes with the velocity c fishes a year; λ and µ fix that they
will do something against their love with velocity c a year. Then instead of the
equation (3.10.1) we should consider the equation

(3.10.2) x′ = f(x) = x(1− x)− c, x = x(t)

The phase portrait of this equation depends on c. What happens if c > 1/4? In this
case the function f(x) is negative for all x, there are no singular points, and even
if at the initial time x(0) = 1 (the lake was full of fish; λ and µ loved each other
like Romeo and Julietta) the solution decreases to −∞. See fig. 3.9. Therefore in
some time there will be no fish in the lake; λ and µ will separate. Nobody want
that. Therefore the rigid plan with c > 1/4 is not OK, people should catch less fish
a year, λ and µ should do less against their love.

Let now c < 1/4, for example c = 1/8. In this case the phase portrait of equation
(3.10.2) is different: there are two singular points, the points at which x(1 − x) =
1/8. They are approximately x1∗ ≈ 0.14 and x∗2 ≈ 0.86. The phase portrait is
showed in fig. 3.10 Let us assume, as above, that at time t0 = 0 the lake is full,
λ and µ love each other like Romeo and Julietta: x(0) = 1. The solution x(t) is
showed in fig. 3.10. We see that

(A) c = 1/8 people will catch all the time, till ∞ 1/8 fishes a year, the lake
will contain not less than 0.86 fishes, λ and µ will do 1/8 a year something against
their love, the level of love between λ and µ will be all time, till 120 not less than
86 percent of the level of love between Romeo and Julietta.

It is good! But now let us optimize the rigid plan. People want more fish, λ and µ
want to do more against their love. The rigid plan c > 1/4 does not work, the rigid
plan c = 1/8 works well. If one takes c = 3/16 then the same argument as above
leads to the following:

(B) c = 3/16 people will catch all the time, till ∞ 1/8 fishes a year, the lake
will contain not less than 0.75 fishes, λ and µ will do 1/8 a year something against
their love, the level of love between λ and µ will be all time, till 120 not less than
75 percent of the level of love between Romeo and Julietta.

The variant (B) looks better than (A). Let us increase c more to get even better
outcome. The optimization of rigid plan leads to c = 1/4. Let us see what happens
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if c = 1/4. In this case the equation (3.10.2) has only one singular point x = 1/2
and the phase portrait is showed in fig. 3.11. Assuming, as above, that at time
t0 = 0 the lake is full, λ and µ love each other like Romeo and Julietta, i.e. x(0) = 1,
the solution is showed in fig. 3.11. Therefore
(C) c = 1/4 people will catch all the time, till ∞ 1/4 fishes a year, the lake will
contain not less than 1/2 of fish, λ and µ will do 1/4 a year something against their
love, the level of love between λ and µ will be all time, till 120 not less than 1/2
the level of love between Romeo and Julietta.

The variant (C) is the best within optimization by rigid plan. It looks very good,
but ... in this case there will be a catastrophe. In some time t1 we will have
x(t1) = 1/2 + ε, where ε is a small positive number. What happens if a little boy
comes and catches few fishes? What happens if an egg fells down in the kitchen of
the apartment λ and µ rent? Or some other small changes? Instead the condition
x(t1) = 1/2 + ε we will have x(t1) = δ with a small positive δ. But with this initial
condition at time t1 the solution tends to −∞ as t →∞.

Therefore in case (C), after some time t1 and “due” to small changes, like a dropped
egg in the kitchen, in some time t1 + t2 there will be no fishes in the lake, λ and
µ will separate. The catastrophe holds not because of the egg, but because it was
used optimization by rigid plan instead of feedback.

What is feedback in our examples? It is the following: people check all the time
how many fishes are in the lake and decide how much to catch depending on that.
The girl and the boy think all the time on the level of their relations and decide
how much to do against their love depending on that.

The optimal feedback is showed in fig. 3.12: people catch fish with the velocity
depending on the number of fishes, namely with the velocity x/2, so that

(3.10.3) x′ = f(x) = x(1− x)− 1
2
x, x = x(t)

The phase portrait and the solution is showed in fig. 3.12. We obtain:

(D) feedback x/2:
the same as in (C): all the time till ∞ people catch not less than 1/4 a year; the lake
is always at least half-full, but unlike (C) there will be no catastrophe: it follows
from the phase portrait in fig. 3.12 that under a small change the worst that can
happen is that people will to continue to catch all the time 1/4− δ a year where δ
is a small number.

3.11. Exercises

1. . Let f(x) = (x − 1)2(x − 2)3(x + 1)4(x + 2)5 and let x1(t), ..., x5(t) be the
solutions of the equation x′(t) = f(x(t)) satisfying the initial condition
x1(1) = −1.5, x2(2) = 0, x3(5) = 1, x4(1) = 0.5, x5(0) = 1.5
and defined for all t. Draw the 5 graphs, of x1(t), ..., x7(t), in the same (t, x) plane.

2. Let x1(t), ..., x5(t) be the solutions of the equation x′(t) = sin(ex(t)) satisfying
the initial condition x1(0) = 2, x2(1) = 2, x3(0) = 3, x4(1) = 3, x5(−1) = 4
and defined for all t. Draw the 5 graphs, of x1(t), ..., x5(t) in the same (t, x) plane.
For each of these graphs find the both coordinates (t1, x1) of all its inflection points
(nikudat pitul). Integrals in the answers for t1 are OK.
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3. Find a formula for the solution x(t) of the equation x′ = ax(b−x) where a, b > 0
are parameters. No inverse function and no integrals in the final answer.

4. Let x(t) be the solution of the equation x′ = f(x) satisfying the initial condition
x(t0) = x0 and defined on maximal possible interval (t−, t+), where the function
f(x) and t0, x0 are given below. Draw the graph of x(t) and find t− and t+. Integral
in the answers are OK only if they converge.
(a) f(x) = (x− 1)2((x− 2)(x− 4)4(x + 2)5, t0 = 1, x0 = −4
(b) f(x) = (1− x)

√
x2 + 1, t0 = 2, x0 = 0

(c) f(x) = x · ln(x2 + 1), t0 = 0, x0 = −1
(d) f(x) = x · ln(x2 + 1), t0 = −6, x0 = 4

5. Let x(t) be the solution of the equation x′ = f(x) satisfying the initial condition
x(t0) = x0 and defined on maximal possible interval (t−, t+). Give an example of
a function f(x) ∈ C1(R) such that each of the requirements below holds.
(a) requirement 1: t+ = ∞ and t− = −∞ for any x0

requirement 2: limt→∞ x(t) 6= +∞ and limt→−∞ x(t) 6= +∞ for any x0

requirement 3: limt→∞ x(t) = −∞ if and only if x0 < 0
(b) requirement 1: t+ = ∞ and t− = −∞ for any x0

requirement 2: limt→∞ x(t) = +∞ if and only if x0 > 3
requirement 3: limt→∞ x(t) = −∞ if and only if x0 < −1
requirement 4: limt→∞ x(t) = 0 if and only if x0 = 0

(c) requirement 1: t+ is a finite number if and only if x−0 > 1
requirement 1: t− is a finite number if and only if x0 < 1

6. Find all inflection points (both t- and x-coordinates) in the graph of the solution
of the equation x′ = 2 + sin2x satisfying the initial condition x(0) = 0 and defined
on maximal possible interval.

7. Let f(x) be a function whose graph is showed in fig. 3.13. Assume that the
number of fishes in a lake changes by the equation x′(t) = f(x(t)) provided people
do not fish. People start fishing when the lake is full: x = 1. Explain what will
happen if people fish by the rigid plan (a), by the rigid plan (b), by feedback (c),
by feedback (d), by feedback (e).

8. A girl λ and a boy µ optimize their life by the rigid plan

x′(t) = x(t)(1− x(t))− 1/4.

where t is time in weeks and x(t) is the level of their love in comparison with Romeo
and Julietta. Today the love each other as Romeo and Dzhulyetta (x(0) = 1). At
time t1 = 50 weeks an egg falls down in their kitchen, or something similar happens,
which decreases the level of their love by 0.05. In how many weeks t∗ after that
their haverut will be over, i.e. x(t1 + t∗) = 0? The answer t∗ should be a number,
no integrals.



CHAPTER 4

Equations of the form x′′ = f(x).
Two body problem. Pendulum.

4.1. Introduction to the chapter

Equations of the form

(4.1.1) x′′ = f(x), x = x(t)

mean, in physical language, that a body moves along the x-axes with acceleration
f(x) which depends only on the position of the body. By the second Newtom’s law
it means that the body moves under the action of the force mf(x), where m is the
mass of the body.

The initial conditions for the second order equations, in particular for equations
(4.1.1) is the initial location and the initial velocity of the body. In math language:

(4.1.2) x(t0) = x0, x′(t0) = v0,

where t0, x0 and v0 are given numbers.

4.2. Existence and uniqueness theorem.
Theorem on prolongation of soluitions

The following theorem is a particular case of a much more general existence and
uniqueness theorem which will be discussed in the end of the course.

Theorem 4.2.1. Fix the initial conditions (4.1.2). Assume f(x) ∈ C1(U)
where U is a neighborhood of the point x0 in the x-axes. The equation (4.1.1) has
a solution x(t) satisfying (4.1.2). If x(t) and x̃(t) are two such solutions, defined
on intervals I and Ĩ, then x(t) = x̃(t) for any t ∈ I ∩ Ĩ.

Like for ODEs of order 1, the existence part of the theorem does not provide
information on maximal possible interval of the definition of solution, even if U = R.
Such information can be obtained from the following prolongation theorem.

Theorem 4.2.2. Let x(t) be a solution of equation (4.1.1) defined for t ∈ (a, b).
Assume that there exist finite limits

lim
t→b

x(t) = B, lim
t→b

x′(t) = B1.

If f(x) ∈ C1(U) where U is a neighborhood of the point B in the x-axes then the
solution x(t) has a prolongation to the right: there exists a solution x̃(t) of the same
equation defined for t ∈ (a, b + ε), ε > 0, and coinciding with x(t) for t ∈ (a, b).

A theorem on prolongation to the left is similar. Unlike the case of first order
ODE’s there is no theorem stating that there are limits, finite or infinite, of x(t)
and x′(t) as t → b.

29
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Theorem 4.2.2 follows from the existence part of Theorem 4.2.1 as follows. Consider
the initial conditions x(b) = B, x′(b) = B1. Let x̂(t) be a solution satisfying these
initial conditions and defined for t ∈ (b − ε, b + ε). Construct the function x̃(t):
x̃(t) = x(t) as t ∈ (a, b) and x̃(t) = x̂(t) as t ∈ [b, b + ε). It is easy to prove that
x̃(t) is a solution of the same equation.

The uniqueness part of Theorem 4.2.1 is illustrated in fig.4.1. If f(x) ∈ C1(R) then
two solutions as in fig. 4.1.a are possible (unlike the case of equations of order 1),
but two solutions as in fig. 4.1.b or 4.1.c are impossible.

Unlike the case of order 1 equations x′ = f(x), a non-constant solution x(t) of (4.1.1)
does not need to be monotonic function. But any critical point of x(t) (point t1
such that x′(t1) = 0) must be a point of local maximum or local minimum, see fig.
4.2. It follows from he following statement.

Theorem 4.2.3. Let x(t) be a non-constant solution of (4.1.1) and let x′(t1) =
0. Let x(t1) = x1. If f(x) ∈ C1(U) where U is a neighborhood of the point x1 in
the x-axes then x′′(t1) 6= 0 and consequently t1 is the point of local maximum or
local minimum of x(t).

Proof. Assume, to get contradiction, that x′′(t1) = 0. Then f(x1) = 0 and
then the constant function x̂(t) ≡ x1 is a solution. The uniquiness theorem implies
that x(t) = x̂(t) for any t such that x(t) is defined, i.e. x(t) is a constant solution.

¤

4.3. Theorem on shift of time and inverse of time.
Theorem on symmetries and on periodic solutions

Like for ODEs x′ = f(x) for (4.1.1) we have the theorem on shift of time, and
unlike ODEs x′ = f(x) for (4.1.1) we also have a theorem on inverse of time.

Theorem 4.3.1. Let x(t) be a solution of (4.1.1) defined on the interval t ∈
(a, b). Then the following functions are also solutions of the same equation:

1. (shift of time): the function x̃(t) = x(t + t1), for any t1 ∈ R, defined for
t ∈ (a− t1, b− t1);

2. (inverse of time): the function x̂(t) = x(−t) defined for t ∈ (−b,−a).

Proof. We have x̃′(t) = x′(t + t1) and x̂′(t) = −x′(t + t1). It follows x̃′′(t) =
x′′(t + t1) and x̂′′(t) = x′′(−t). These equations imply Theorem 4.3.1. ¤

Theorem 4.3.1 is illustrated in fig. 4.3. This Theorem implies the following theorem
on the symmetry about any critical point.

Theorem 4.3.2. Let f(x) ∈ C1(R). Let x(t) be a solution of (4.1.1) such that
x′(t1) = 0. Then the graph of x(t) is symmetric about the vertical line t = t1 in the
(t, x)-plane, i.e. x(t1 − t) = x(t1 + t) for any t such that t1 − t and t1 + t belong to
the interval of definition of x(t).

Proof. By Theorem 4.3.1 the functions x̃(t) = x(t1 + t) and x̂(t) = x(t1 − t)
are solutions of the same equations. We have x̃(0) = x̂(0) = x(t1). We also have
x̃′(t1) = x′(t1) and x̂′(t1) = −x′(t1). Since x′(t1) = 0 we have x̃′(t1) = x̂′(t1) = 0.
Now Theorem 4.3.2 follows from the uniqueness theorem. ¤
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What can be said about a function whose graph is symmetric about two vertical
lines t = t1 and t = t2 in the (t, x)-plane? Intuition suggests that in this case the
function is periodic.

Theorem 4.3.3. Let f(x) ∈ C1(R). Let x(t) be a solution of (4.1.1) such that
x′(t1) = x′(t2) = 0 where t2 > t1. Then x(t) is a periodic function:

x(t + T ) = x(t), T = 2(t2 − t1)

for any t such that x(t) and x(t + T ) are defined.

Proof. By Theorem 4.3.2 we have

(4.3.1) x(t1 + t) = x(t1 − t),

(4.3.2) x(t2 + t) = x(t2 − t).

It follows

x(t) = x(t1 + (t− t1)) = (by 4.3.2) = x(t1 − (t− t1)) = x(2t1 − t) =

= x(t2 + (2t1 − t− t2)) = (by 4.3.2) = x(t2 − (2t1 − t− t2)) = x(t + 2(t2 − t1)).
¤

4.4. Theorem on energy. Energy equation

The following theorem in the math form of the energy preserving law
for equations (4.1.1).

Definition. The kinematic and the potential energy of a solution x(t) of (4.1.1)
are the function of t defined as follows:

K(t) =
(x′(t))2

2
, P (t) = −

∫ x(t)

c

f(s)ds

where c is any constant (the potential energy is defined up to a constant).

Theorem 4.4.1. For any solution x(t) of equation (4.1.1) with a continuous
function f(x) we have

K(t) + P (t) ≡ const.

Proof. We have

K ′(t) = x′(t) · x′′(t), P ′(t) = −f(x(t)) · x′(t).
Therefore

(K(t) + P (t))′ = x′(t) · (x′′(t)− f(x(t))) ≡ 0.

¤

Write the conclusion of Theorem 4.4.1 in the form

(x′(t))2

2
−

∫ x(t)

c

f(s)ds = C = const.

If x(t) satisfies the initial conditions (4.1.2) then the constant C can be found from
these initial condition by substituting t = t0:

(x′(t))2

2
−

∫ x(t)

c

f(s)ds =
v2
0

2
−

∫ x0

c

f(x)dx.
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It is convenient to take c = x0. We obtain

(4.4.1) Energy equation :
(x′(t))2

2
−

∫ x(t)

x0

f(s)ds =
v2
0

2
.

4.4.1. Example: energy equation for a spring. According to Hooke’s law
the energy equation for oscillations of a spring (see fig. 4.4) is x′′ = −kx with a
certain coefficient k depending on the spring. We have f(x) = −kx and the energy
equation has the form

(x′(t))2

2
−

(
−k ·

(
x2(t)− x2

0

2

))
=

v2
0

2

which can be simplified to

(x′(t))2 + kx2(t) = v2
0 + kx2

0.

4.4.2. Example: a rocket launched up from the surface of the Earth.
According to the gravitation law, the equation is as follows: x′′ = − k

x2 where x is
the distance to the center of the Earth, see fig. 4.5. The coefficient k can be found
from the fact that for x = R (the radius of the Earth) we have x′′ = −g. It follows
k = gR2, so we deal with equation

(4.4.2) x′′ = −gR2

x2
.

If the rocket is launched from the surface of the Earth with initial velocity v0, we
have the initial conditions

x(0) = R, x′(0) = v0.

The energy equation is as follows:

(x′(t))2

2
−

∫ x(t)

R

−gR2

s2
ds =

v2
0

2
.

It can be simplifies to

(4.4.3)
(x′(t))2

2
− 2gR2

x(t)
= v2

0 − 2gR.

4.5. Two body problem

4.5.1. The problem. Consider the following simple case of the two body
problem, generalizing the case of a rocket launched up in section 4.4.2:

a big body, which is a ball of radius R, does not move and stands all the time at
the point x = 0;

a small body of mass m = 1, which is assumed to be a point, moves along the
x-axes under the force of attraction to the big body;

this force depends on the coordinate x of the small body, it is defined for all x > R
and it is strictly positive for all x > R.

At the initial time t = 0 the small body has the coordinate x(0) = x0 > R and the
initial velocity x′(0) = v0 directed opposite to the direction of the attraction force.

See fig. 4.6. We also will assume that the attraction force F (x) is a differentiable
function with continuous derivative. In math terms the problem is as follows:
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x′′ = −F (x) ∈ C1(x > R), F (x) > 0 for all x > R

x(0) = x0 > R, x′(0) = v0 > 0.
(4.5.1)

4.5.2. Qualitative analysis. Thinking about a rocket launched up, one can
imagine two possibilities for solution x(t) of (4.5.1), showed in fig. 4.7, a,b :

(a) the small body moves all the time away from the big body, and moves arbitrary
far: x(t) →∞ as t → infty.

(b) the small body moves away from the big body to some distance xmax in certain
time t1 and after that goes back and meets the big body in some finite time.

Maybe another type of solution is possible, for example solutions showed in figure
4.7, c1, c2, c3? The answer is no.

Theorem 4.5.1. In the two body problem (4.5.1) there are not more than the
following two possibilities (see fig. 4.7, a,b):

(a) The solution x(t) is defined for all t > 0. it increases for all t > 0 and tends
to ∞ as t →∞;

(b) The solution x(t) is defined for t < T where x(T ) = R. It increases as t < t1
and decreases as t > t1 so that t1 is the point of maximum.

The time T in case (b) is the time when the two bodies meet.

Proof.
Case 1. At first assume that x′(t) 6= 0 for all t > 0. Since x′(0) = v0 > 0, the
solution x(t) is an increasing function. Its derivative x′(t) is a decreasing function
because x′′(t) < 0 for all t. Since x′(t) 6= 0 we have x′(t) < v0 for all t > 0.

It follows that for any finite t+ > 0 there are finite limits of x(t) and of x′(t)
as t → t+. Now the prolongation Theorem 4.2.2 implies that there is a solution
defined for all t > 0. We have excluded the possibility c2 in fig. 4.7. Now we have
to exclude the possibility c1 in fig. 4.7, i.e. to prove that x(t) →∞ as t →∞.

Assume, to get contradiction, that x(t) → B < ∞ as t →∞. Consider the function
F (x) on the closed interval [x0, B]. We have

F (x) > ε > 0, x ∈ [x0, B]

and it follows
x′′(t) < −ε, t ∈ (0,∞).

But then x′(t) → −∞ as t →∞ which contradicts to our assumption that x′(t) 6= 0
for all t > 0.

We have proved that in Case 1 we have all statements in case (a) of Theorem 4.5.1.

Case 2 (alternative case). Assume now that x′(t1) = 0 for some t1 > 0 and
x′(t) 6= 0 for t < t1. Since x′′(t) < 0 for all t, the solution x(t) has a local maximum
at the point t1 and x′(t) < 0 for all t > t1. Assume that x(t) is defined for
0 < t < T and has no prolongation to the right. We have to show that x(t) → R

as t → T . Note that the case x(T ) → R̃ < R is impossible because the function
f(x) is not defined for x < R. We have to exclude the case that x(t) → R̃ > R
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as t → T . This possibility is excluded by the prolongation Theorem 4.2.2 provided
limt→T x′(t) 6= −∞ and consequently the derivative x′(t) has a finite limit as t → T .

Therefore the last item to be proved is as follows: if x(t) → R̃ > R as t → T then
limt→T x′(t) 6= −∞. To prove this claim consider the function F (x) on the closed
interval [R̃, x(t1)]. We have

F (x) < M, x ∈ [R̃, x(t1)]

for some finite M , and it follows

0 > x′′(t) > −M, t ∈ (t1, T ) =⇒ lim
t→T

x′(t) 6= −∞.

¤

4.5.3. Distinguishing (a) and (b). Critical initial velocity.
The cases (a) and (b) in Theorem 4.5.1 can be distinguished using the energy
equation. The energy equation in the two body problem is the energy equation
(4.4.1) with f(x) = −F (x):

(4.5.2)
(x′(t))2

2
+

∫ x(t)

x0

F (s)ds =
v2
0

2
.

Assume we have case (a). Taking the limit in (4.5.2) as t →∞ we obtain

(4.5.3) v0 ≥
√

2
∫ ∞

x0

F (x)dx.

Assume now we have case (b). Substituting to (4.5.2) the time t1 such that
x′(t1) = 0 we obtain

v0 =

√
2

∫ x(t1)

x0

F (x)dx

and consequently

(4.5.4) v0 <

√
2

∫ ∞

x0

F (x)dx.

Definition. The critical initial velocity in the two body problem is the velocity

v0,crit =

√
2

∫ ∞

x0

F (x)dx.

Note that the critical initial velocity v0,crit depends on the initial location x0 of the
small body.

Since v0 satisfies either (4.5.3) or (4.5.4) we obtain the following theorem:

Theorem 4.5.2. In the two body problem the case (a) in Theorem 4.5.1 holds
if and only if v0 ≥ v0,crit and the case (b) holds if and only if v0 > v0,crit.

Corollary 4.5.3. If
∫∞

x0
F (x)dx = ∞ then only case (b) is possible (the bodies

will meet whatever is the initial velocity). If
∫∞

x0
F (x)dx = ∞ (i.e. the integral

converges) then both cases (a) and (b) are possible and which of them holds depends,
when F (x) is fixed, on the couple (v0, x0).
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4.5.4. Example: the second cosmic (escape) velocity. A rocket launched
up from the surface of the Earth is a particular case of the two body problem with

F (x) =
gR2

x2
, x0 = R

where R is the radius of the Earth, see section 4.4.2. In this case

v0,crit =

√
2

∫ ∞

R

gR2

x2
=

√
2gR ≈ 11200 m/sec.

This velocity is also called the escape velocity or the second cosmic velocity.

4.5.5. Solving the two body problem. Let us show how to answer the
following questions, see fig. 4.7, a,b:

1. Let v0 < v0,crit. Find the maximal distance between the two bodies, i.e. find
xmax = maxt≥0x(t).

2. Let v0 < v0,crit. In which time the distance between the bodies is maximal, i.e.
find t1 such that x(t1) = xmax.

3. In which time t2 the distance between the bodies is equal to a given number d
such that x0 ≤ d < xmax?

4. Let v0 < v0,crit. In which time T the two bodies will meet, i.e. x(T ) = R?
(more precisely limt→T x(t) = R).

SOLUTIONS

Question 1. We can find xmax by substituting to the energy equation (4.5.2) the
time t1 such that x(t1) = xmax and consequently x′(t1) = 0. We obtain

(4.5.5) xmax :
∫ xmax

x0

F (x)dx =
v2
0

2

which uniquely defines xmax.

Example. Let F (x) = 1
x . Then v0,crit = ∞, therefore xmax < ∞ for any x0 and

(4.5.5) gives

lnxmax − lnx0 =
v2
0

2
=⇒ xmax = x0 · exp

(
v2
0

2

)
.

Example. Let F (x) = 1
x2 . Then

v0,crit =

√
2

∫ ∞

x0

dx

x2
=

√
2
x0

and if v0 < v0,crit then xmax is a finite number defined by the equation
∫ xmax

x0

dx

x2
=

v2
0

2

and it follows

xmax =
1

1
x0
− v2

0
2

.
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Question 2. We can use the inverse function to the solution x(t) restricted to
t ∈ [0, t1]. Since for t ∈ [0, t1) the derivative x′(t) is non-negative, from the energy
equation (4.5.2) we have

x′(t) =

√
v2
0 − 2

∫ x(t)

x0

F (s)ds, t ∈ [0, t1].

Let t(x), x ∈ [x0, xmax] be the inverse function. Then

t′(x) =
1√

v2
0 − 2

∫ x

x0
F (s)ds

, x ∈ [x0, xmax]

and consequently

t(x) = t(x0) +
∫ x

x0

du√
v2
0 − 2

∫ u

x0
F (s)ds

.

Since t(x0) = 0 and t(xmax) = t1 we obtain

t1 =
∫ xmax

x0

dx√
v2
0 − 2

∫ x

x0
F (s)ds

.

Example. If F (x) = 1
x2 then

t1 =
∫ xmax

x0

dx√
v2
0 + 2

(
1
x − 1

x0

) , xmax =
1

1
x0
− v2

0
2

.

Question 3. If v0 ≥ v0,crit such time t2 is unique and can be found in the same
way as above using the inverse function t(x). We obtain

t2 =
∫ d

x0

dx√
v2
0 − 2

∫ x

x0
F (s)ds

.

If v0 < v0,crit then there are two options for t2, see fig. ****:

t2 = t2,a < t1, t2 = t2,b > t1.

By exactly the same argument as above we have

t2,a =
∫ d

x0

dx√
v2
0 − 2

∫ x

x0
F (s)ds

.

To find t2,b we cannot use the inverse function to x(t) for t ∈ [0, t2,b], but we can
use the inverse function to x(t) for t ∈ [t1, t2,b]. In this interval the derivative x′(t)
is non-positive, and from the energy equation (4.5.2) we have

x′(t) = −
√

v2
0 − 2

∫ x(t)

x0

F (s)ds, t ∈ [t1, t2,b].

It follows

t2,b − t1 =
∫ d

xmax

dx

−
√

v2
0 − 2

∫ x

x0
F (s)ds

=
∫ xmax

d

dx√
v2
0 − 2

∫ x

x0
F (s)ds
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and consequently

t2,b =
∫ xmax

x0

dx√
v2
0 − 2

∫ x

x0
F (s)ds

+
∫ xmax

d

dx√
v2
0 − 2

∫ x

x0
F (s)ds

.

Remark. The same answer can be obtained using Theorem 4.3.2 on symmetries.
By this theorem we have t2,b − t1 = t1 − t2,a and therefore

t2,b = 2t1 − t2,a.

Question 4. If x0 = R then by Theorem **** on symmetries we have t∗ = 2t1. If
x0 > R we can compute x∗ in the same way as above, see fig. ****. We obtain

t∗ − t1 =
∫ R

xmax

dx

−
√

v2
0 − 2

∫ x

x0
F (s)ds

=
∫ xmax

R

dx√
v2
0 − 2

∫ x

x0
F (s)ds

and consequently

t∗ =
∫ xmax

x0

dx√
v2
0 − 2

∫ x

x0
F (s)ds

+
∫ xmax

R

dx√
v2
0 − 2

∫ x

x0
F (s)ds

.

4.6. The pendulum (or a swing)

4.6.1. Introduction. Consider a pendulum or a swing which might oscillate
or turn over, see fig. 4.8. It is convenient to use the coordinate θ on the circle S1 (the
circle of the pendulum) such that θ = 0 corresponds to the stable equilibrium and
θ = π to the unstable equilibrium of the pendulum. The set of all possible positions
of the pendulum is a circle S1 (or real numbers modulo 2kππ) with the coordinate
θ measured in radians. The positive direction is the anticlockwise direction.

Our purpose is to understand the motion of the pendulum if at the initial time
t = 0 we have θ = θ0 ∈ [0, π) and the initial angle velocity is v0 > 0, see fig. 4.8,a.
One can expect that there exists a certain critical velocity v0,crit (depending on θ0)
such that:

if v0 > v0,crit the pendulum will turn over infinite number of times, see fig. 4.8,b.

if v0 < v0,crit the pendulum will oscillate, see fig. 4.8,c.

We will find v0,crit and we will prove that

if v0 = v0,crit then the pendulum will be approaching the position of unstable
equilibrium, bit will never come to this position, see fig. 4.9.

4.6.2. Qualitative analysis. It is easy to obtain the following equation for
the pendulum of length `, where θ is measured in radians:

(4.6.1) θ′′ = −g

`
sinθ, θ ∈ S1.

It is important that here θ is not a real number, it is a point in the circle S1, i.e. a
real number modulo 2πk. We will analyze solution t → θ(t) ∈ S1 of this equation
satisfying the initial condition

(4.6.2) θ(0) = θ0 ∈ [0, π), θ′(0) = v0 > 0.
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Lemma 4.6.1. Let θ(t) be the solution of (4.6.1) satisfying (4.6.2). If θ(t1) = π
for some time t1 (i.e. the pendulum is in the position of the unstable equilibrium)
then θ′(t1) 6= 0 (the velocity of the pendulum is not 0). If θ′(t1) = 0 then θ(t1) 6= π.

Proof. These statements follow from the uniqueness theorem and the fact that
the equation (4.6.1) has the constant solution θ(t) ≡ π (corresponding to the case
the the pendulum stays all the time in the position of unstable equilibrium). ¤

Now we need the energy equation (4.4.1) with f(x) → − g
` sinθ. The integral can

be easily computed and we obtain

(4.6.3)
(θ′(t))2

2
− g

`
cos θ(t) =

v2
0

2
− g

`
cos θ0.

Lemma 4.6.2. Let θ(t) be the solution of (4.6.1) satisfying (4.6.2).

1. If θ(t1) = π for some time t1 then

(4.6.4) v0 >

√
2g

`
(1 + cos θ0).

2. If θ′(t1) = 0 for some time t1 then

(4.6.5) v0 <

√
2g

`
(1 + cos θ0).

Proof. Substitute t = t1 to the energy equation (4.6.3). If θ(t1) = π we
obtain

v2
0

2
=

(θ′(t1))2

2
+

g

`
(1 + cos θ0)

which implies (4.6.4) because by Lemma 4.6.1 θ(t1) = π =⇒ θ′(t1) 6= 0.

If θ′(t1) = 0 we obtain
v2
0

2
=

g

`
(cos θ0 − cos θ(t1)) .

In this case by Lemma 4.6.1 we have θ(t1) 6= 0, therefore cos θ(t1) > −1 and (4.6.5)
follows. ¤

Now it is clear that the critical initial angle velocity should be defined as follows:

(4.6.6) θ0,crit =

√
2g

`
(1 + cos θ0).

Theorem 4.6.3. If v0 > v0,crit then the pendulum will turn over infinitely
many times. In this case the solution t → θ(t) of (4.6.1) satisfying (4.6.2) is a
periodic function defined for all t ∈ R such that θ′(t) 6= 0 for all t and

(4.6.7) {θ(t), t ≥ 0} = S1

Theorem 4.6.4. If v0 < v0,crit then the pendulum will oscillate. In this case
the solution t → θ(t) of (4.6.1) satisfying (4.6.2) is a periodic function defined for
all t ∈ R such that

(4.6.8) {θ(t), t ≥ 0} = [−θmax, θmax], θmax ∈ (θ0, π).
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Theorem 4.6.5. If v0 = v0,crit the pendulum will approach the position of
the unstable equilibrium, but will never be in this position. In this case the solution
t → θ(t) of (4.6.1) satisfying (4.6.2) is a function defined for all t such that θ′(t) 6= 0
for all t and

(4.6.9) {θ(t), t ≥ 0} = [θ0, π), lim
t→∞

θ(t) = π.

It is important to note that the fact that the solution θ(t) is periodic for both cases
that the pendulum turns over or oscillates is related to the fact that t → θ(t) is a
function from R to S1 and not from R to R. The two types of periodic solutions
are distinguished by the image of θ(t) as t ≥ 0, see fig. 4.10.

The proof of Theorems 4.6.3 and 4.6.4 is based on Lemmas 4.6.1 and 4.6.2 as well as
on the energy equation (4.6.3) and Theorem 4.3.3 on periodic solutions. A precise
proof requires rather big work similar to the proofs in sections 4.5.2, 4.5.3. I leave
these proofs to a reader as a (non-simple) exercise.

Proof of Theorem 4.6.5. Let v0 = v0,crit. If θ(t1) = π for some t1 then the
energy equation (4.6.3) implies θ′(t1) = 0 which contradicts to Lemma 4.6.1. If
θ′(t1) = 0 for some t1 then the energy equation (4.6.3) implies θ(t1) = π which
again contradicts to Lemma 4.6.1. Therefore θ(t) 6= π and θ′(t) 6= 0 for all t.

It follows that for t ≥ 0 we can deal with θ(t) as with a function t → R. It is an
increasing function and it is bounded from above by π. Therefore it has a limit
B ≤ π. We have to prove that B = π.

Assume, to get contradiction, that B < π. The function g
` sinθ takes positive

values on the closed interval [θ0, B], therefore it is bounded from below by some
positive number ε. It follows θ′′(t) < −ε, t ∈ [0,∞). But then θ′(t) → −∞ which
contradicts to the fact that θ(t) is an increasing function.

4.6.3. Solving the equation of the pendulum (example). .

Let us solve the following problem:

Problem. The initial position of the pendulum is showed in fig. 4.11, a: θ0 = π/2,
the initial velocity is 3 rad/sec. The problem is to find the first time t1 such that
at this time the pendulum will be in the position showed in fig. 4.11, b, when
θ = −π/4.

Certainly t1 depends on the length ` of the pendulum. The required time t1 exists if
and only if v0 6= v0,crit. If v0 > v0,crit the pendulum will go through the position of
the unstable equilibrium, then will go down to the required position. If v0 < v0,crit

the pendulum will rich the maximal angle θmax ∈ (π/2, π), after that it will go
clockwise to the required position. These two cases are principally different.

Therefore we have to start with finding the critical initial velocity. Since θ0 = π/2

we have v0,crit =
√

2g
` and it follows:

3 = v0 > v0,crit ⇔ ` <
2g

9
, the pendulum will turn over

3 = v0 < v0,crit ⇔ ` >
2g

9
, the pendulum will oscillate

3 = v0 = v0,crit ⇔ ` =
2g

9
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Therefore if ` = 2g
9 then the required time t1 does not exist. It exists for any ` 6= 2g

9 .

Case 1: ` < 2g
9 .

In this case the pendulum will turn over. For t ∈ [0, t1] we can deal with θ(t) as
with an increasing function t → R taking the value π/2 as t = 0 and the value 7π

4
(and not −π/4!) as t = t1, see fig. 4.12,a.

The energy equation (4.6.3 with θ0 = π/2, v0 = 3 takes the form

(4.6.10)
(θ′(t))2

2
− g

`
cos θ(t) =

9
2
.

Since θ′(t) > 0 for t ∈ [0, t1] we have

θ′(t) =

√
9 +

2gcos θ(t)
`

, t ∈ [0, t1].

Using the inverse function t(x), x ∈ [π/2, 7π/4] in the same way as many times
above we obtain

t1 =
∫ 7π/4

π/2

dθ√
9 + 2gcos θ

`

.

Case 2: ` > 2g
9 .

In this case the pendulum will oscillate. We can deal with θ(t) as with a function
t → R, but in this case 7π/4 must be replaced by −π/4, see fig. 4.12,b. The required
t1 can be found in two steps, using the inverse function for t ∈ [0, t∗] and the inverse
function for t ∈ [t∗, t1], where t∗ is the time such that θ(t∗) = θmax ∈ (π/2, π), see
fig. 4.12,b. In the same way as in section 4.5.5 we obtain

t∗ =
∫ θmax

π/2

dθ√
9 + 2gcos θ

`

t1 − t∗ =
∫ −π/4

θmax

dθ

−
√

9 + 2gcos θ
`

==
∫ θmax

−π/4

dθ√
9 + 2gcos θ

`

and consequently

t1 =
∫ θmax

π/2

Q(θ)dθ +
∫ θmax

−π/4

Q(θ)dθ, where Q(θ) =
1√

9 + 2gcos θ
`

It remains to find θmax ∈ (π/2, π). It is simple: just substitute t∗ to the energy
equation (4.6.10). We obtain

θmax = arccos

(
− 9`

2g

)
,

with the value of arccos in the interval (π/2, π).
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4.7. Exercises

1. Let x(t) be solution of an equation of the form x′′ = f(x) ∈ C1(R) satisfying the
initial conditions x(1) = 2, x′(1) = 3 and defined for all t. Let x̃(t) be solution of
the same equation satisfying the initial conditions x̃(0) = 2, x̃′(0) = −3 and defined
for all t. Find t1 such that x̃(13) = x(t1). (Use Theorem 4.3.1).

2. Prove that in the two body problem of section 4.5 the critical initial velocity
can be defined as follows: it is the only initial velocity such that x(t) → ∞ and
x′(t) → 0 as t →∞.

3. A rocket has been launched up from the Earth surface with the initial velocity
v0 = (1− ε)v0,crit, where v0,crit =

√
2gR is the “escape velocity” (or second cosmic

velocity), ε > 0, and R is the radius of the Earth. Let t∗ = t∗(ε) be the time in
which the rocket will reach its maximal height. Obtain explicit (without integrals)
formula for the function t∗(ε) and characterize the behavior of t∗(ε) ar ε → 0. For
which ε (approximately) the rocket will reach its maximal height in a month after
it has been launched?
Solving the problem use the equation x′′ = − gR2

x2 where x = x(t) is the distance
between the rocket and the center of the Earth. You will have to compute the
integral of the form

∫
dx√
a
x +b

. Enjoy integration techniques from hedva or infi.

4. Assume that a big body and a small body are points (balls of radius 0), the big
body does not move and attracts the small body of mass 1 kg with the force

a) F =
1

xlnx
, b) F =

1√
x

c) F =
1

x
√

x

kg ·m/sec2 , where x is the distance between the bodies (in meters). At the initial
time (t = 0) the distance between the bodies is 10 meters and the initial velocity
of the small body is v0 m/sec directed in such a way that the distance between the
bodies starts to increase. In which time t∗ the distance between the bodies will be
20 meters? The answer depends on v0. If the answer is not unique you should find
all answers. Integrals in the answers are OK.

5. Develop a complete theory for another version of two body problem on a line:
a big body repels the small one with the force F (x) and the initial velocity of the
small body is directed towards the big body (fig. 4.13):

x′′ = F (x) ∈ C1(x > R), F (x) > 0 for all x > R,

x(0) = x0, x′(0) = v0 < 0.

Here “complete theory” means analogous of the theorems in sections 4.5.2, 4.5.3
describing two possible cases and distinguishing them in terms of critical velocity.

6. A big body which does not move repels a small body of mass 3 kg with the
force 1/x (in kg · m/sec2) where x = x(t) is the distance between the bodies (in
meters). At the initial time-moment the distance between the bodies is 4 meters
and the small body has velocity 2 m/sec towards the big body. Find (a) the minimal
distance xmin between the bodies (without integrals in the answer) and (b) time t1
such that x(t1) = xmin (integrals in the answer OK) and (c) time t2 such that the
distance between the bodies is 10 m (integrals in the answer OK).
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7. Find the period of the pendulum for case 1 and for case 2 of section 4.6.3, i.e.
the minimal number T such that θ(t + T ) = θ(t) mod 2kπ.
Integrals in the answers OK.

8. The initial position of the pendulum is showed in fig. 4.14
(θ0 = 3π/4, v0 = 1 rad/sec). Find the first time t1 such that

(a) the pendulum has velocity 2 rad /sec directed anticlockwise

(b) the pendulum has velocity 2 rad /sec directed clockwise

(c) the pendulum has velocity 0.5 rad /sec directed anticlockwise

(d) the pendulum has velocity 0.5 rad /sec directed clockwise.

The length ` of the pendulum is a parameter of the answer. Integrals in the answer
are OK. It is very important to distinguish the case that the pendulum turns over
from the case of oscillations. In some cases (that you have to find) t1 does not exist.



CHAPTER 5

Systems of ODEs x′ = Ax

5.1. Existence and uniqueness theorem

In this chapter we consider systems of ODEs of the form

(5.1.1) x′ = Ax, x = x(t) =




x1(t)
· · ·

xn(t)


 , A is an n× n matrix.

For example, the system

x′1(t) = 2x1(t) + 5x2(t), x′2(t) = −3x1(t) + 7x2(t)

can be writen in form (5.1.1) with A =
(

2 5
−3 7

)
.

System of form (5.1.1) are called linear homogeneous systems of first order ODEs
with constant coefficients.

The initial condition in the case of systems of first order ODEs, in particular systems
(5.1.1), is the condition

(5.1.2) x(t0) = x0 ∈ Rn

with a fixed time t0 and fixed vector x0 ∈ Rn.

It is clear that if x(t) is a solution of (5.1.1) then x̃(t) = x(t + α) is also a solution,
for any real α (shift of time). It allows to reduce the general initial condition (5.1.2)
to the initial condition

(5.1.3) x(0) = x0 ∈ Rn

Theorem 5.1.1. For any n× n matrix A and any x0 ∈ Rn system (5.1.1) has
a solution defined for all t ∈ R and satisfying (5.1.3). Such a solution is unique.

We postpone to the end of the course the proof of the uniqueness. The proof of the
existence of a solution defined for all t is based on the exponent of a matrix, see
section 5.3

5.2. The structure of the set of all solutions

Theorem 5.2.1. Fix an n × n matrix A. The set of all solutions of (5.1.1)
defined for all t ∈ R is a vector space over R of dimension n.

Proof. The set of all differentiable vector-functions defined for all t is an
infinite-dimensional vector space over R. To show that the set of all solutions of
(5.1.1) is a subspace of this space we have to check that the sum of two solutions
is also a solution and that multiplying a solution by a real number we get another
solution. Each of these claims is very simple and we leave the proof to a reader.

43
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To prove that the dimension of the set of all solutions of (5.1.1) is equal to n we
have to give an example of a basis consisting of n solutions. Take the standard
basis of Rn:

(5.2.1) e1 =




1
0
0
· · ·
0




, e2 =




0
1
0
· · ·
0




, · · · , en =




0
0
· · ·
0
1




.

By the existence part of Theorem 5.1.1 there are solutions x(1)(t), ..., x(n)(t) satis-
fying the initial conditions

x(1)(0) = e1, x(2)(0) = e2, · · · , x(n)(0) = en.

We claim that these n solutions is a basis of the vector space of all solutions. To
prove it we have to show that these n solutions are linearly independent and that
any solution is there linear combination with numerical coefficients.

The linear independence is obvious. In fact, if a linear combination of the vector-
functions x(1)(t), ..., x(n)(t) with coefficients r1, ...rn ∈ R is the zero vector, i.e. the
zero vector-function, then r1x

(1)(t) + · · ·+ rnx(n)(t) ≡ 0 and substituting t = 0 we
obtain r1e1 + · · ·+ rnen = 0 whence r1 = · · · = rn = 0.

The proof that any solution is a linear combination of the solutions x(1)(t), ..., x(n)(t)
requires the uniqueness part of Theorem 5.1.1. Take any solution x(t). Consider
the vector x(0) = (q1, ..., qn) ∈ Rn (sometimes a vector will be written as a row).
Consider the solution x̂(t) = q1x

(1)(t) + · · · + qnx(n)(t). We have x̂(0) = x(0) =
(q1, ..., qn) and by the uniqueness part of Theorem 5.1.1 x(t) = x̂(t), i.e. x(t) is a
linear combination of the solutions x(1)(t), ..., x(n)(t). ¤

5.3. Solutions in the form of the exponent of a matrix

The exponent of an n×n matrix A is defined by the same series as the exponent
of a number:

(5.3.1) eA = I + A +
A2

2!
+

A3

3!
+ · · ·

Here I is the identity m× n matrix. Consider also the series

(5.3.2) etA = I+tA+
t2

2!
A2+

t3

3!
A3+· · · = B(t) =




b11(t) · · · b1n(t)
· · ·

bn1(t) · · · bnn(t)


 , t ∈ R.

Given a matrix Q = Q(t) whose entries Qij(t) are functions of t, the derivative
Q′(t) of this matrix is defined to be a matrix whose entries Q′

ij(t). We will use the
following theorem (proved in some infi courses).

Theorem 5.3.1. The series (5.3.1) converges to a certain matrix, for any
square matrix A. Consequently the series (5.3.2) converges to a certain matrix
B(t) whose entries bij(t) are functions of t, defined for all t ∈ R. These functions
are infinitely-differentiable. The derivative of the sum of the series (5.3.2) is the
sum of the derivatives of the matrices in this series, i.e.

B′(t) =
(
etA

)′
= (I)′ + (tA)′ +

(
t2

2!
A2

)′
+

(
t3

3!
A3

)′
+ · · · .
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Obviously

(I)′ = 0, (tA)′ = A,

(
t2

2!
A2

)′
= tA2,

(
t3

3!
A3

)′
=

t2

2!
A3, · · · .

Therefore
(
etA

)′
= A + tA2 +

t2

2!
A3 + · · · = A

(
I + tA +

t2

2!
A2 + · · ·

)

and we obtain, as a corollary, the following statement:
(
etA

)′
= AetA.

Take now any vector x0 ∈ R and consider the vector-function etAv0. It is clear that(
etAv0

)′ =
(
etA

)′
v0 and consequently

(
etAv0

)′
= AetAv0.

Note that the exponent of the zero matrix is the matrix I, therefore the vector-
function etAx0 takes the value x0 as t = 0. We obtain the following theorem.

Theorem 5.3.2. The vector-function etAx0 is the solution of system (5.1.1)
satisfying (5.1.3).

The proof of Theorem 5.2.1 implies the following corollary.

Theorem 5.3.3. Let e1, ..., en is the standard basis of Rn (see 5.2.1). The n
vector functions etAe1, ..., e

tAen is a basis of the vector space of all solutions of
system (5.1.1).

Remark 5.3.4. Tracing the proof of Theorem 5.2.1 it is easy to see that in
Theorem 5.3.3 the standard basis of Rn can be replaced by any basis of Rn.

The applications of Theorems 5.3.2 and 5.3.3 for computation of solutions are rather
restricted since these theorems involve an infinite series of matrices which might
converge very slowly, especially when t is big. In sections 5.4- 5.8 we will give a
way to find a basis of the vector space of all solutions of (5.1.1) in a much more
explicit form.

Theorem 5.3.2 gives a good for computation formula for solution only in the case
that A is a nilpotent matrix which means that Ak+1 = 0 for some k ≥ 0. The
following statement is a direct corollary of Theorem 5.3.2.

Theorem 5.3.5. Assume that A is a nilpotent matrix, i.e. Ak+1 = 0 for some
k ≥ 0. Then the solution of system (5.1.1) satisfying (5.1.3) is the polynomial
vector function

x(t) =
k∑

i=0

ti

i!
Ai, where A0 = I.

Remark 5.3.6. It is known that an n × n matrix is nilpotent if and only if
it has only one eigenvalue 0 (of algebraic multiplicity n). For example the matrix(

3 a
b c

)
is nilpotent if and only if c = −3 and ab = 3c. One can see it immediately

using the fact that a 2× 2 matrix has only one zero eigenvalue if and only if both
trace and determinant of this matrix are equal to 0.
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Another application of Theorem 5.3.2 is computation of the solution of (5.1.1)
satisfying (5.1.3) up to terms of order ` + 1 as t → 0. The following statement is
also a direct corollary of Theorem 5.3.2.

Theorem 5.3.7. Let ` ≥ 1. The the solution of system (5.1.1) satisfying (5.1.3)
has the form

x(t) =
∑̀

i=0

ti

i!
Ai + o

(
t`

)
as t → 0.

5.4. Computation of a basis in the case that A is diagonalizable over R

Recall from basic algebra course that the following conditions for a square real
matrix A are equivalent:

1. there is a basis of Rn consisting of eigenvectors of A;

2. A is similar, over R, to the matrix D = diag(λ1, ..., λn): the diagonal matrix
with the eigenvalues of A on the diagonal. It means that T−1AT = D for some
non-singular real matrix T (non-singular means invertible);

3. all eigenvalues of A are real and each of them has the same algebraic and
geometric multiplicity.

If one (and then any other) of these conditions holds the matrix A is called diago-
nalizable over R.

Theorem 5.4.1. Assume that A is diagonalizable over R. Let v1, ..., vn ∈ Rn be
linearly independent eigenvectors of A corresponding to the eigenvalues λ1, ..., λn ∈
R respectively (the case λi = λj for some j 6= i is not excluded). Then the n
vector-functions

(5.4.1) eλ1tv1, · · · , eλntvn

is a basis of the vector space of all solutions of (5.1.1).

Proof. We have
(
eλitvi

)′
= λie

λitvi = eλit (λivi) = eλitAvi = A
(
eλitvi

)

and it follows that each of the vector-functions (5.4.1) is a solution of (5.1.1). To
prove that these n solutions are linearly independent we assume that there linear
combination with numerical coefficients is the zero function, we substitute t = 0
and obtain that the linear combination of the eigenvectors v1, ..., vn with the same
coefficients is equal to 0. Since the eigenvector are linearly independent it follows
that each of the coefficients is equal to 0. ¤

5.5. System x′ = Ax for complex-valued vector-functions

To cover the case that some of the eigenvalues of A are not real we should consider
the complex-valued solutions of system (5.1.1), i.e. vector functions

x(t) = (x1(t), ..., xn(t)), xk(t) = ak(t) + ibk(t), i =
√−1, k = 1, ..., n.

The variable t remains real. The derivative of complex-valued vector function is
defined by

x′(t) = (x′1(t), ..., x
′
n(t)), x′k(t) = a′k(t) + ib′k(t), i =

√−1
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Definition 5.5.1. The exponent of a complex (including real) n×n matrix A
(including the exponent of a complex number which is the case n = 1) is defined in
the same way as the exponent of a real matrix, i.e. by the series (5.3.1).

All the results of sections 5.1 - 5.4 also hold for complex-valued solutions of system
(5.1.1).

Theorem 5.5.2. Let A be any complex (including real) n× n matrix. For any
x0 ∈ Cn there exists one and only one complex-valued solution of system (5.1.1)
satisfying the condition x(0) = x0 and defined for all t ∈ R. It can be given by the
series x(t) = etAx0. The set of all complex-valued solutions of system (5.1.1) is a
vector space over C of dimension n.

Recall from basic algebra course that the following conditions for a square comples
matrix A are equivalent:

1. there is a basis of Cn consisting of eigenvectors of A;

2. A is similar, over C, to the matrix D = diag(λ1, ..., λn): the diagonal matrix
with the eigenvalues of A on the diagonal. It means that T−1AT = D for some
non-singular complex matrix T (non-singular means invertible);

3. each of the eigenvalues of A has the same algebraic and geometric multiplicity.

If one (and then any other) of these conditions holds the matrix A is called diago-
nalizable over C.

Theorem 5.5.3. If A is diagonalizable over C then one of the basis of the
vector space of all complex-valued solutions of (5.1.1) is the n functions (5.4.1)
where v1, ..., vn ∈ Cn are linearly independent eigenvectors of A corresponding to
the eigenvalues λ1, ..., λn ∈ C respectively (the case λi = λj for some j 6= i is not
excluded).

5.6. The Euler formula and the formula for ez1+z2

One of the most valuable for applications in the following beautiful theorem.

Theorem 5.6.1 (Euler).

eit = cos t + i · sin t, i =
√−1, t ∈ R.

One of the proofs is to distinguish the real part and the imaginary part in the series
eit = 1 + it + (it)2

2! + (it)3

3! + · · · : we obtain the well-known series for cos t and sin t.

An alternative proof, using ODEs, is as follows. Consider the equation z′(t) = iz(t)
for a complex valued function z(t) = x(t)+ iy(t). One of its solutions is z1(t) = eit.
It satisfies the condition z(0) = 1. On the other hand, the equation z′(t) = iz(t)
can be expressed as the system of two equations for x(t) and y(t), namely x′(t) =
−y(t), y′(t) = x(t). This system has a solution x(t) = cos t, y(t) = sin t. Therefore
the equation z′ = iz has a solution z2(t) = cos t + i sin t. One has z2(0) = 1. By
the uniqueness theorem z1(t) ≡ z2(t) and the Euler formula follows.

We need one more result (without proof).

Theorem 5.6.2. ez1+z2 = ez1 · ez2 for any complex numbers z1, z2.
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Combining Theorems 5.6.1 and 5.6.2 we obtain the formula which will be used in
the sequel:

(5.6.1) e(a+bi)t = eat (cos(bt) + i · sin(bt)) , i =
√−1

5.7. Computation of a basis in the case that
A is diagonalizable over C, but not over R

The matrix A is real in any case. Therefore for each non-real eigenvalue λ there
is an eigenvalue λ̄ and the eigenvector corresponding to λ̄ can be chosen to be
complexly-conjugate to the eigenvector corresponding to λ. Let the eigenvalues
and the eigenvectors of A be as follows:

λ1 = a1 + b1i → v1, λ̄1 = a1 − b1i → v̄1, b1 6= 0, v1 ∈ Cn − Rn

· · ·
λs = as + bsi → vs, λ̄s = as − bsi → v̄s, bs 6= 0, vs ∈ Cn − Rn

θ1 → w1, · · · , θk → wk, θ1, ..., θk ∈ R, w1, ..., wn ∈ Rn.

(5.7.1)

Then the tuple of n vector-functions

f1 = eλ1tv1, f̄1 = eλ̄1tv̄1, · · · ,

fs = eλstvs, f̄s = eλ̄stv̄s,

g1 = eθ1tw1, · · · gk = eθktwk

(5.7.2)

consisting of 2s complex-valued functions f1, f̄1, ..., fs, f̄s and k real-valued functions
g1, ..., gk is a basis of the vector space of complex-valued solutions of system (5.1.1).
Replace this tuple by another tuple of n functions as follows:

h1 =
f1 + f̄1

2
= Re(f1), h2 =

f1 − f̄1

2i
= Im(f1),

· · · , hs =
fs + f̄s

2
= Re(fs), h2 =

fs − f̄s

2i
= Im(fs),

g1 = eθ1tw1, · · · gk = eθktwk

(5.7.3)

Since the functions (5.7.2) are linearly independent over C, the functions (5.7.3) are
also linearly independent over C and consequently over R. Each of these functions
is a real-valued solution of (5.1.1). Therefore the tuple of n functions (5.7.3) is a
basis of the vector space of real-valued solutions of (5.1.1). Using the Euler formula
we obtain the following theorem.

Theorem 5.7.1. Assume that the eigenvalues and the eigenvector of a real n×n
matrix A have form (5.7.1). Then one of the basis of the vector space of real-valued
solutions of system (5.1.1) is the tuple of vector functions

ea1tRe ((cos(b1t) + i · sin(b1t)) · v1) , ea1tIm ((cos(b1t) + i · sin(b1t)) · v1) ,

· · · ,

eastRe ((cos(bst) + i · sin(bst)) · v1) , eastIm ((cos(bst) + i · sin(bst)) · v1) ,

eθ1tw1, · · · gk = eθktwk.
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5.8. Computation of a basis in the case that
A is not diagonalizable over C (only the case n ≤ 3)

The way is as follows. Given a system x′ = Ax with a non-diagonalizable over C
real n×n matrix A we introduce a new vector-function y = (y1(t), ..., yn(t)) related
to x = (x1(t), ..., xn(t)) by a non-singular (=invertible) matrix T :

x = Ty, x =




x1(t)
· · ·

xn(t)


 , y =




y1(t)
· · ·

yn(t)


 .

The system x′ = Ax takes the form

(Ty)′ = ATy

and consequently
y′ = Jy, J = T−1AT.

Here the matrix J is similar to A and T is a transition matrix from A to J (when
A and are J fixed, the transition matrix T is not unique). By the choice of T we
can make J to be any matrix similar to T . It is worth to chose T such that J is as
simple as possible. Now we need the following statements from linear algebra.

Proposition 5.8.1. Any real 2× 2 matrix A which is not diagonalizable over
C is similar to the matrix

(5.8.1)
(

λ 1
0 λ

)

where λ is the eigenvalue of A (it must be real and have algebraic multiplicity 2).

Proposition 5.8.2. Any real 3× 3 matrix A which is not diagonalizable over
C is similar to one of the matrices

(5.8.2)




λ 1 0
0 λ 1
0 0 λ




(5.8.3)




λ 1 0
0 λ 0
0 0 µ


 here the case λ = µ is not excluded.

The case (5.8.2) holds if and only if A has only one eigenvalue λ of algebraic
multiplicity 3 and geometric multiplicity 1.

The case (5.8.3) with λ = µ holds if and only if A has two distinct eigenvalues
λ 6= µ, the eigenvalue λ has algebraic multiplicity 2 and geometric multiplicity 1,
the eigenvalue µ has algebraic and geometric multiplicity 1;

The case (5.8.3) with λ 6= µ holds if and only if A has has only one eigenvalue λ
of algebraic multiplicity 3 and geometric multiplicity 2.

The matrices (5.8.1), (5.8.2), (5.8.3) are all possible Jordan normal forms of a non-
diagonalizable 2× 2 or 3 × 3 matrix A. Propositions 5.8.1 and 5.8.2 give a simple
way to find the Jordan normal form for any such A (for 2×2 matrices it is unique).

If J is one of the matrices (5.8.1), (5.8.2), (5.8.3), a basis of the vector space of
solutions of system y′ = Jy is as follows.
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Proposition 5.8.3. If J is one of the matrices (5.8.1), (5.8.2), (5.8.3) then
the vector space of solutions of the system y′ = Jy has the following basis:

J =
(

λ 1
0 λ

)
:

(
eλt

0

)
,

(
teλt

eλt

)
;

J =




λ 1 0
0 λ 1
0 0 λ


:




eλt

0
0


 ,




teλt

eλt

0


 ,




t2

2 eλt

teλt

eλt


;

J =




λ 1 0
0 λ 0
0 0 µ


:




eλt

0
0


 ,




teλt

eλt

0


 ,




0
0

eµt


.

Proof. It is easy to check that each of these vector-functions is a solution of
the system y′ = Jy and that these solutions are linearly independent. ¤

This proposition implies the following corollary.

Theorem 5.8.4. Let A be a 2× 2 or 3× 3 matrix which is not diagonalizable
over C. Let J be the Jordan normal form of A and let T be the transition matrix:
T−1AT = J . The the vector space of solutions of the system x′ = Ax has the
following basis:

J =
(

λ 1
0 λ

)
: T

(
eλt

0

)
, T

(
teλt

eλt

)
;

J =




λ 1 0
0 λ 1
0 0 λ


: T




eλt

0
0


 , T




teλt

eλt

0


 , T




t2

2 eλt

teλt

eλt


;

J =




λ 1 0
0 λ 0
0 0 µ


: T




eλt

0
0


 , T




teλt

eλt

0


 , T




0
0

eµt


.

Finding the transition matrix T

In order to use Theorem 5.8.4 one should know how to find the transition matrix
T . It can be found as follows.

The case J =
(

λ 1
0 λ

)
. Write the equation T−1AT = J in the form AT = TJ .

Let T1, T2 ∈ R2 be the columns of T . The equation AT = TJ is the same as the
system

AT1 = λT1, AT2 = λT2 + T1

or equivalently
(A− λI)T1 = 0, (A− λI)T2 = T1.

Each of these equations is a linear system. The first linear system means that T1 is
one of the eigenvectors and we can chose any eigenvector. The second linear system
has a solution T2 (not unique) with any eigenvector T1. Whatever T1 and T2 are
chosen the vectors T1, T2 are linearly independent and consequently T is invertible
matrix.
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The case J =




λ 1 0
0 λ 1
0 0 λ


. Write the equation T−1AT = J in the form AT = TJ .

Let T1, T2, T3 ∈ R3 be the columns of T . The equation AT = TJ is the same as
the system

AT1 = λT1, AT2 = λT2 + T1, AT3 = λT3 + T2

or equivalently

(A− λI)T1 = 0, (A− λI)T2 = T1, (A− λI)T3 = T2.

Each of these equations is a linear system. The first linear system means that T1 is
one of the eigenvectors and we can chose any eigenvector. The second linear system
has a solution T2 (not unique) with any eigenvector T1. The third linear system has
a solution T3 (not unique) whatever the eigenvector T1 and whatever the solution
T2 of the second system are chosen. Whatever is our choice for the eigenvector T1

and solutions T2, T3 of the second and the third linear system, the vectors T1, T2, T3

are linearly independent and consequently T is invertible matrix.

The case J =




λ 1 0
0 λ 0
0 0 µ


. Write the equation T−1AT = J in the form AT = TJ .

Let T1, T2, T3 ∈ R3 be the columns of T . The equation AT = TJ is the same as
the system

AT1 = λT1, AT2 = λT2 + T1, AT3 = µT3.

or equivalently

(A− λI)T1 = 0, (A− λI)T2 = T1, (A− µI)T3 = 0.

Each of these equations is a linear system. The first and the third linear systems
mean that T1 and T3 are eigenvectors corresponding to the eigenvalues λ and µ.
They are always linearly independent if λ 6= µ. If λ = µ they can be chosen to be
linearly independent. If λ 6= µ then the second linear system always has a solution
T2. It is not so if λ = µ: in this case the second system has a solution T2 ∈ R2 for a
certain, but not any choice of T1. If T1 and T3 are linearly independent eigenvectors
and T1 is chosen such that the second system has a solution T2 then the vectors
T1, T2, T3 are linearly independent and consequently T is invertible matrix.

5.9. Example

Let us find the solution of the system

x′ = Ax, A =




2 1 3
2 3 6
a 0 0




with parameters a, b ∈ R satisfying the initial condition x(0) =




0
0
1


. The eigen-

values of A are as follows:

λ1 = 1, λ2,3 = 2±√4 + 3a.

Case 1: a > −4/3 and a 6= −1.
In this case A has three distinct real eigenvalues and consequently A is diagonaliz-
able over R.
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Case 2: a < −4/3.
In this case A has a real eigenvalue λ1 = 1 and two non-real conjugate eigenvalues
λ3 = λ̄2, therefor A is diagonalizable over C, but not over R.

Case 3: a = −4/3. In this case A has two eigenvalues λ1 = 1 of algebraic
multiplicity 1 and λ2 = 2 of algebraic multiplicity 2. The geometric multiplicity of
λ2 = 2 is equal to 1.

Case 4: a = −1. In this case A has two eigenvalues λ1 = 1 of algebraic multiplicity
2 and λ2 = 3 of algebraic multiplicity 1. The geometric multiplicity of λ1 = 1 is
equal to 1.

Solution in case 1. Let, for example a = 0 so that A =




2 1 3
2 3 6
0 0 0


 . The

eigenvectors corresponding to the eigenvalues 1, 4, 0 can be chosen as follows:

λ1 = 1 →



1
−1
0


; λ2 = 4 →




1
2
0


; λ3 = 0 →




3
6
−4


.

Therefore any solution has the form

C1e
t




1
−1
0


 + C2e

4t




1
2
0


 + C3




3
6
−4


 .

To find the solution satisfying the initial condition x(0) =




0
0
1


 we substitute t = 0

and obtain a linear system for C1, C2, C3:


1 1 3
−1 2 6
0 0 −4







C1

C2

C3


 =




0
0
1


 .

We obtain C1 = 0, C2 = 3/4, C3 = −1/4. Therefore

x(t) =
3
4
e4t




1
2
0


− 1

4




3
6
−4




or equivalently

x1(t) =
3
4

(
e4t − 1

)
, x2(t) =

3
2

(
e4t − 1

)
, x3(t) ≡ 1.

Solution in case 2. Let, for example a = −3 so that A =




2 1 3
2 3 6
−3 0 0


 . The

eigenvectors corresponding to the eigenvalues 1, 2± i
√

5 can be chosen as follows:

λ1 = 1 → v1 =




1
8
−3


 ; λ2 = 2 + i

√
5 → v2 =




2 +
√

5i

4 + 2
√

5i
−3


 , λ3 = λ̄2 → v3 = v̄2.

Therefore a basis of the vector space of all real-valued solutions can be chosen as
follows:
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et




1
8
−3


 , Re


e(2+i

√
5)t




2 +
√

5i

4 + 2
√

5i
−3





 , Im


e(2+i

√
5)t




2 +
√

5i

4 + 2
√

5i
−3







Using the Euler formula we can write down this basis without complex numbers:

et




1
8
−3


 , e2t




2cos(
√

5t)−√5sin(
√

5t)
4cos(

√
5t)− 2

√
5sin(

√
5t)

−3cos(
√

5t)


 , e2t



√

5cos(
√

5t) + 2sin(
√

5t)
2
√

5cos(
√

5t) + 4 sin(
√

5t)
−3sin(

√
5t)




Therefore any solution has the form

C1e
t




1
8
−3


+C2e

2t




2cos(
√

5t)−√5sin(
√

5t)
4cos(

√
5t)− 2

√
5sin(

√
5t)

−3cos(
√

5t)


+C3e

2t



√

5cos(
√

5t) + 2sin(
√

5t)
2
√

5cos(
√

5t) + 4 sin(
√

5t)
−3sin(

√
5t)


 .

To find the solution satisfying the initial condition x(0) =




0
0
1


 we substitute t = 0

and obtain a system of linear equations for C1, C2, C3:



1 2
√

5
8 4 2

√
5

3 −3 0







C1

C2

C3


 =




0
0
1




and it remains to solve this system.

Solution in case 3: a = − 4
3 . In this case A =




2 1 3
2 3 6
− 4

3 0 0


 . This matrix is

similar to the Jordan normal form J =




2 1 0
0 2 0
0 0 1


. We have to find a transition

matrix: a non-singular matrix T such that T−1AT = J . The columns T1, T2, T3 of
T satisfy the equations

(A− 2I)T1 = 0, (A− 2I)T2 = T1, (A− I)T3 = 0.

The vectors (columns) T1 and T3 are the eigenvectors corresponding to the eigen-

values 2 and 1. We can chose them, for example, T1 =




3
6
−2


 , T3 =




3
9
−4


. The

vector (column) T2 is a solution of the system




0 1 3
2 1 6
− 4

3 0 −2


 T2 =




3
6
−2


. This

system, though its matrix is singular, must have infinitely many solutions. We may

chose any of them, for example T2 =




3/2
3
0


. Now we know the transition matrix
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T =




3 3/2 3
6 3 9
−2 0 −4


 and a basis of the vector space of all solutions:

T




e2t

0
0


 =




3e2t

6e2t

−2e2t


 , T




te2t

e2t

0


 =




3te2t + 3
2e2t

6te2t + 3e2t

−2te2t


 , T




0
0
et


 =




3et

9et

−4et


 .

Any solution has the form

x(t) = C1




3e2t

6e2t

−2e2t


 + C2




3te2t + 3
2e2t

6te2t + 3e2t

−2te2t


 + C3




3et

9et

−4et


 .

To find the solution satisfying the initial condition x(0) =




0
0
1


 we substitute t = 0

and obtain a system of linear equations for C1, C2, C3:


3 3/2 3
6 3 −9
−2 0 −4







C1

C2

C3


 =




0
0
1




and it remains to solve this system.

Solution in case 4: a = −1. In this case A =




2 1 3
2 3 6
−1 0 0


 . This matrix is

similar to the Jordan normal form J =




1 1 0
0 1 0
0 0 3


. We have to find a transition

matrix: a non-singular matrix T such that T−1AT = J . The columns T1, T2, T3 of
T satisfy the equations

(A− I)T1 = 0, (A− I)T2 = T1, (A− 3I)T3 = 0.

The vectors (columns) T1 and T3 are the eigenvectors corresponding to the eigen-

values 1 and 3. We can chose them, for example, T1 =




1
2
−1


 , T3 =




3
6
−1


. The

vector (column) T2 is a solution of the system




1 1 3
2 2 6
−1 0 −1


 T2 =




1
2
−1


. This

system, though its matrix is singular, must have infinitely many solutions. We may

chose any of them, for example T2 =




1
0
0


. Now we know the transition matrix

T =




1 1 3
2 0 6
−1 0 −1


 and a basis of the vector space of all solutions:

T




et

0
0


 =




et

2et

−et


 , T




tet

et

0


 =




tet + et

2tet

−tet


 , T




0
0

e3t


 =




3e3t

6e3t

−e3t


 .
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Any solution has the form

C1




et

2et

−et


 + C2




tet + et

2tet

−tet


 + C3




3e3t

6e3t

−e3t


 .

To find the solution satisfying the initial condition x(0) =




0
0
1


 we substitute t = 0

and obtain a system of linear equations for C1, C2, C3:


1 1 3
2 0 6
−1 0 −1







C1

C2

C3


 =




0
0
1




and it remains to solve this system.

5.10. One more example

Let

Q =




1 2 b
0 1 c
0 0 1


 , T =




1 0 0
1 1 0
0 1 2


 , A = TQT−1, a, c ∈ R.

Let us solve the system x′ = Ax.

Note that T−1AT = Q, therefore if we know a basis y1, y2, y3 of the vector space
of solutions of the system y′ = Qy, a basis of the vector space of solutions of the
system x′ = Ax is x1 = Ty1, x2 = Ty2, x3 = Ty3. Therefore let us solve the system
y′ = Qy.

The matrix Q has the only eigenvalue 1 of algebraic multiplicity 3. Its geometric
multiplicity is equal to 1 if c 6= 0 and to 2 if c = 0.

Case 1: c 6= 0. In this case Q is similar to Jordan normal form J =




1 1 0
0 1 1
0 0 1


.

Let U be the transition matrix: U−1QU = J and let U1, U2, U3 be the columns of
U . They satisfy the equations

(Q− I)U1 = 0, (Q− I)U2 = U1, (Q− I)U3 = U2

One of solutions is

U1 =




1
0
0


 , U2 =




0
1
2
0


 , U3 =




0
− b

4c
1
2c


 .

Therefore

U =




1 0 0
0 1

2 − b
4c

0 0 1
2c




and the vector space of solutions of the system y′ = Qy has a basis

y1 = U




et

0
0


 =




et

0
0


 , y2 = U




tet

et

0


 =




tet

1
2et

0


 , y3 = U




t2

2 et

tet

et


 =




t2

2 et

1
2 tet − b

4cet

1
2cet


 .
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Consequently a basis of the vector space of solutions of the system x′ = Ax is

x1 = Ty1 =




et

0
0


 , x2 = Ty2 =




tet

tet + 1
2et

1
2et




, x3 = Ty3 =




t2

2 et

t2

2 et + 1
2 tet − b

4cet

1
2 tet − b

4cet + 1
c et




.

Case 2: c = 0. In this case Q is similar to Jordan normal form J =




1 1 0
0 1 0
0 0 1


.

Let U be the transition matrix: U−1QU = J and let U1, U2, U3 be the columns of
U . They satisfy the equations




0 2 b
0 0 0
0 0 0


U1 = 0,




0 2 b
0 0 0
0 0 0


 U2 = U1,




0 2 b
0 0 0
0 0 0


U3 = 0.

It means that U1 and U3 are linearly independent eigenvectors. In this case we
cannot take arbitrary eigenvector U1: the second and the third coordinate of U1

must be equal to 0, otherwise the equation for U2 has no solutions. We can take

U1 =




1
0
0


 , U3 =




0
b
−2


 , U2 =




0
1
2
0




, then

U =




1 0 0
0 1

2 b
0 0 −2


 .

It follows that the vector space of solutions of the system y′ = Qy has a basis

y1 = U




et

0
0


 =




et

0
0


 , y2 = U




tet

et

0


 =




tet

1
2et

0


 , y3 = U




0
0
et


 =




0
bet

−2et


 .

and the vector space of solutions of the system x′ = Ax has a basis

x1 = Ty1 =




et

0
0


 , x2 = Ty2 =




tet

tet + 1
2et

1
2et


 x3 = Ty3 =




0
bet

(b− 4)et


 .

5.11. Exercises

1. Let x(t) = (x1(t), x2(t), x3(t), x4(t)) be solution of the system

x′1 = 2x1 + 5x2 − 7x3 + 10x4, x′2 = −x2 + 9x3 + x4,

x′3 = x1 + 3x4, x′4 = x2 − x3 + x4

satisfying the initial condition x1(0) = 1, x2(0) = 3, x3(0) = 0, x4(0) = 2. Find
r1, r2, r3 ∈ R such that x3(t) = r1 + r2t + r3t

2 + o(t2) as t → 0.

2. Find the solution of the system x′1 = x1+x2, x′2 = ax1+bx2 satisfying the initial
condition x1(0) = 1, x2(0) = 0. Here a, b ∈ R are parameters. The final answer
must be without the exponent of a matrix and without any complex numbers.
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3. Find the solution of the system

x′1 = x1 + x2 + x3, x′2 = 2x1 + 2x2 + 2x3, x′3 = ax1 + bx2 + 3x3

satisfying the initial condition x1(0) = 0, x2(0) = 0, x3(0) = 1. Here a, b ∈ R
are parameters. The final answer must be without the exponent of a matrix and
without any complex numbers.

4.a. Find a basis of all complex-valued solutions of the system z′1 = iz2, z′2 = −iz1,
i =

√−1.

4.b Express this system in the real form, i.e. express it as a system of ODEs for
functions x1(t) = Re(z1(t)), x2(t) = Re(z2(t)), y1(t) = Im(z1(t)), y2(t) = Im(z2(t)).

5. Let

T =




2 0 4 0 0 0 0 3 0 0
0 1 0 5 0 0 0 1 0 0
0 0 1 2 0 0 0 0 0 0
0 0 0 0 3 0 2 0 0 0
0 0 0 0 1 0 0 0 1 1
0 0 0 0 0 2 1 0 0 1
0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 3 1 1
0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0




, J =




2 1 0 0 0 0 0 0 0 0
0 2 1 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0 0
0 0 0 3 1 0 0 0 0 0
0 0 0 0 3 1 0 0 0 0
0 0 0 0 0 3 0 0 0 0
0 0 0 0 0 0 −1 1 0 0
0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 −1 1
0 0 0 0 0 0 0 0 0 −1




Find a basis of the vector space of all solutions of the system x′ =
(
TJT−1

)
x. The

final answer should be without the exponent of a matrix.

There will be more exercises.





CHAPTER 6

Phase portraits

6.1. Phase portrait for autonomous systems of ODEs

Consider the system of ODEs

(6.1.1) x′1 = f1(x1, ..., xn), . . . , x′n = fn(x1, ..., xn)

with respect to unknown functions x1 = x1(t), ..., xn = xn(t). It is the general form
of autonomous system of first order ODEs. The word autonomous corresponds
to the fact that the functions f1, ..., fn do not depend on t. For any autonomous
equation or system of equations we have the lemma on shift of time:
if x(t) = (x1(t), ..., xn(t)) is a solution then
x̃(t) = x(t + a) is also a solution for any a.

Definition 6.1.1. Let x(t) = (x1(t), ..., xn(t)) be a solution of (6.1.1) defined
on maximal possible interval (t−, t+). The set of points

γ =
{
x(t), t ∈ (t−, t+)

} ⊂ Rn

is called the phase curve corresponding to the solution x(t). An oriented phase
curve is a phase curve endowed with an arrow corresponding to the increase of
time. The collection of all oriented phase curves of (6.1.1) (i.e. oriented phase
curves corresponding to all possible solutions) is called the phase portrait of (6.1.1).

If for system (6.1.1) we have existence and uniqueness theorem, i.e. for any initial
condition x(0) = x0 ∈ Rn there exists a solution satisfying this initial condition,
and any two such solutions are the same on the intersection of the intervals of their
definition, then the phase portrait is a foliation of Rn which means that there is a
phase curve passing through any fixed point of Rn and two different phase curves do
not intersect. The general existence and uniqueness theorem (which is postponed
to the end of the course) implies that for system (6.1.1) a sufficient condition for
the existence and uniqueness property is fi(x1, ..., xn) ∈ C1(Rn), i.e. each of the
functions f1, ..., fn has a derivative with respect to any of the variables x1, ..., xn

and each of these derivatives is a continuous function.

Proposition 6.1.2. Assume that fi(x1, ..., xn) ∈ C1(Rn), i = 1, ..., n. Then for
any point of Rn there is a phase curve passing through this point and two different
phase curves do not intersect.

Proof. The existence of a phase curve passing through any fixed point fol-
lows from the existence theorem. To prove that two different phase curves do not
intersect we need the uniqueness theorem and the shift of time property.

The proof is as follows. Let γ1 and γ2 be phase curves corresponding to solutions
x1(t) and x2(t) (both x1(t) and x2(t) are vector-functions) defined on intervals

59
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(a−1 , a+
1 ) and (a−2 , a+

2 ). Assume that γ and γ̃ intersect at a point A ∈ Rn. It means
that x1(t1) = A and x2(t2) = A for some t1, t2. We have to prove that γ1 and γ2

are the same phase curve.

The vector functions

x̃1(t) = x1(t + t1) defined on the interval = t ∈ I1 = (a−1 − t1, a
+
1 − t1)

x̃2(t) = x2(t + t2) defined on the interval = t ∈ I2 = (a−2 − t2, a
+
2 − t2)

are solutions of the same system satisfying the conditions x̃1(0) = x̃2(0) = A.
Since (a−1 , a+

1 ) and (a−2 , a+
2 ) are the maximal possible intervals of definition of the

solutions x1(t) and x2(t) satisfying x1(t1) = A and x2(t2) = A, the intervals I1

and I2 are maximal possible intervals for the solutions x̃1(t) and x̃2(t) satisfying
x̃1(0) = x̃2(0) = A. Therefore I1 and I2 are the same time-interval. Let I1 = I2 =
I. Note that the phase curves γ1 and γ2 can be expressed in the form

γ1 =
{
x1(t), t ∈ (a−1 , a+

1 )
}

= {x̃1(t), t ∈ I}
γ2 =

{
x2(t), t ∈ (a−2 , a+

2 )
}

= {x̃2(t), t ∈ I}
Since x̃1(0) = x̃2(0) = A, by the uniqueness theorem x̃1(t) = x̃2(t) for any t ∈ I.
Therefore γ1 and γ2 are the same phase curve: γ1 = γ2. ¤

6.2. The phase portrait saddle

6.2.1. Standard saddle. Consider the system

(6.2.1) x′ =
(

λ1 0
0 λ2

)
x : x′1 = λ1x1, x′2 = λ2x2, λ1 < 0, λ2 > 0

It has solutions x1(t) = C1e
λ1t, x2(t) = C2e

λ2t. The phase portrait of this system
is showed in fig. 6.1 and it is called the standard saddle. The phase curve γ
corresponding to the solution is as follows:

If C1, C2 > 0 then γ is contained in the domain x1, x2 > 0.
If C1 > 0, C2 < 0 then γ is contained in the domain x1 > 0, x2 < 0.
If C1 < 0, C2 > 0 then γ is contained in the domain x1 < 0, x2 > 0.
If C1, C2 < 0 then γ is contained in the domain x1, x2 < 0.

Any phase curve above approaches the x2-axes as t →∞ and the x1-axes as t → −∞.

If C1 > 0 and C2 = 0 then γ is the ray {x1 > 0, x2 = 0} oriented towards 0.
If C1 < 0 and C2 = 0 then γ is the ray {x1 < 0, x2 = 0} oriented towards 0.
If C1 = 0 and C2 > 0 then γ is the ray {x1 = 0, x2 > 0} oriented towards ∞.
If C1 = 0 and C2 < 0 then γ is the ray {x1 = 0, x2 < 0} oriented towards −∞.
Finally, if C1 = C2 = 0 then γ is the point x1 = x2 = 0.

Definition 6.2.1. A straight line ` ⊂ R2 containing 0 (i.e. 1-dimensional
subspace of R2) is called invariant if any phase curve γ containing a point in `
entirely belongs to `. An invariant line ` is called stable if any phase curve in ` is
oriented towards 0 and unstable if any phase curve in ` is oriented towards 0 after
inverting the orientation (i.e. as t → −∞).

In the case of the standard saddle there are exactly two invariant lines: the x1-axes
is a stable invariant line and the x2-axes is an unstable invariant line.
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6.2.2. General saddle. In general, the saddle is the name for the phase por-
trait of a system x′ = Ax where A is a 2× 2 matrix two real eigenvalues λ1, λ2, one
positive and one negative.

To obtain the phase portrait we introduce a vector-function y = (y1(t), y2(t)) related
to x(t) by a linear transformation x = Ty where T is the transition matrix from A

to D =
(

λ1 0
0 λ2

)
, i.e. T−1AT = D. Then y(t) satisfies the equation y′ = Dy. i.e.

the system (6.3.2) with x replaced by y.

It follows that the phase portrait can be obtained from the phase portrait
of the standard saddle in the (y1, y2)-plane by the linear transformation x = Ty,

see fig. 6.2. Any linear transformation brings a straight line to a straight line.
Therefore the invariant lines in the (x1, x2)-plane are the images of the y1-axes and
the y2-axes under the transformation x = Ty. The y1-axes is spanned by the vector(

1
0

)
, therefore its image is the line spanned by the vector T

(
1
0

)
. i.e. by the first

column of the matrix T . Similarly, the image of the y2-axes is the line spanned by
the second column of the matrix T .

The columns of T are the eigenvectors of A corresponding to λ1 and λ2, therefore
the invariant lines in the (x1, x2)-plane are the lines spanned by these eigenvectors.
We should distinguish the stable and the unstable invariant line:
The stable invariant line is spanned by the eigenvector of A corresponding to
the negative eigenvalue, and the unstable invariant line is spanned by
the eigenvector of A corresponding to the positive eigenvalue.

Knowing the stable and the unstable invariant lines we can draw the whole phase
portrait, see fig. 6.2: any phase curve beyond the invariant lines approaches the
unstable invariant line as t →∞ and the stable invariant line as t → −∞.

6.2.3. Example. Consider the system x′1 = −x2, x′2 = −8x1 + 2x2. The

matrix
(

0 −1
−8 2

)
has eigenvalues −2 and 4. The corresponding eigenvectors are

−2 →
(

1
2

)
, 4 →

(
1
−4

)
.

Therefore the phase portrait is one showed in fig. 6.3.

6.2.4. Example: fight between two armies. Assume that during the fight
between two armies the loss of soldiers in each of the armies is proportional to the
product of the number of soldiers and the power of weapon in the army of the
enemy. Assume also that the power of the weapon in each army does not change
during the fight. Denote the power of the weapon in the first army by w1 and in
the second army by w2 and assume that the first army has more powerful weapon:
w1 > w2. Denote by s1 and s2 the number of soldiers in the first and the second
army in the beginning of the fight and assume that s1 < s2. Thus the first army has
more powerful weapon, but less soldiers. Which of the armies will win the fight?

The assumptions above lead to the system x′1 = −kw2x2, x′2 = −kw1x1, where
x1 = x1(t) and x2 = x2(t) is the number of soldiers in the first and in the second
army at time-moment t. Here k is some positive coefficient, the same in the two
equations. We have the initial condition x1(0) = s1, x2(0) = s2.



62 6. PHASE PORTRAITS

The matrix of the system is
(

0 −kw2

kw1 0

)
. Its eigenvalues are ±k

√
w1w2. The

eigenvectors are

k
√

w1w2 →
( √

w2

−√w1

)
, k

√
w1w2 →

(√
w2√
w1

)
.

Therefore the phase portrait is one showed in fig. 6.4. In fact, we need only a part
of this phase portrait, in the first quarter of the (x1, x2)-plane. From the phase
portrait we see that the first army wins if and only if the phase curve corresponding
to the solution of the system is below the line x2 =

√
w1
w2

x1. The phase curve

corresponding to the solution with the initial condition (x1(0), x2(0)) = (s1, s2) is
the phase curve in the phase portrait containing the point (s1, s2). Therefore the
first army wins if and only if the point (s1, s2) is located below the line x2 =

√
w1
w2

x1,

i.e. s2 <
√

w1
w2

s1 or equivalently:

the first army wins if and only if w1 > w2 ·
(

s2
s1

)2

.

6.3. The phase portrait node

6.3.1. Standard stable node. Consider the system

(6.3.1) x′ =
(

λ1 0
0 λ2

)
x : x′1 = λ1x1, x′2 = λ2x2, λ1, λ2 < 0, |λ1| < |λ2|.

It has solutions x1(t) = C1e
λ1t, x2(t) = C2e

λ2t. The phase portrait of this system
is showed in fig. 6.5, a and it is called the standard stable node. The phase curve
γ corresponding to the solution is as follows:

If C1, C2 > 0 then γ is contained in the domain x1, x2 > 0.

If C1 > 0, C2 < 0 then γ is contained in the domain x1 > 0, x2 < 0.

If C1 < 0, C2 > 0 then γ is contained in the domain x1 < 0, x2 > 0.

If C1, C2 < 0 then γ is contained in the domain x1, x2 < 0

Any phase curve γ above approaches 0 as t →∞.

The closure of any phase curve γ above (i.e. γ ∪ {0}) is tangent to the x1-axes at 0.

If C1 > 0 and C2 = 0 then γ is the ray {x1 > 0, x2 = 0} oriented towards 0.

If C1 < 0 and C2 = 0 then γ is the ray {x1 < 0, x2 = 0} oriented towards 0.

If C1 = 0 and C2 > 0 then γ is the ray {x1 = 0, x2 > 0} oriented towards 0.

If C1 = 0 and C2 < 0 then γ is the ray {x1 = 0, x2 < 0} oriented towards 0.

Finally, if C1 = C2 = 0 then γ is the point x1 = x2 = 0.

Like in the case of the standard saddle there are exactly two invariant lines: the
x1-axes and the x2-axes, but now each of them is a stable invariant line.
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6.3.2. Standard unstable node. Consider the system

(6.3.2) x′ =
(

λ1 0
0 λ2

)
x : x′1 = λ1x1, x′2 = λ2x2, λ1, λ2 > 0, λ1 < λ2.

It has solutions x1(t) = C1e
λ1t, x2(t) = C2e

λ2t. The phase portrait of this system is
showed in fig. 6.5,b and it is called the standard unstable node. This phase portrait
differs from the standard stable node only by orientation of the phase curves: each
of the arrows is opposite. There are exactly two invariant lines: the x1-axes and
the x2-axes, but now each of them is an unstable invariant line.

6.3.3. General stable and unstable node. It is the name for the phase
portrait of a system x′ = Ax in the case that A is a 2× 2 matrix with two distinct
real eigenvalues, either both negative (stable node) or both positive (unstable node).

The phase portrait can be obtain from the phase portrait of the standard stable
or unstable node in the same way as in section 6.2.2. See fig. 6.6. The invariant
lines are spanned by the linearly independent eigenvectors of A. The closure of any
phase curve beyond the invariant lines is tangent at 0 to the invariant line spanned
by the eigenvector corresponding to the eigenvalue whose absolute value is smaller
than the absolute value of the other eigenvalue.

6.3.4. Example. Consider the system x′1 = −6x1+x2, x′2 = −3x1−2x2. The

matrix
(−6 1
−3 −2

)
has eigenvalues −3 and −5. The corresponding eigenvectors are

−3 →
(

1
3

)
, −5 →

(
1
1

)
.

Therefore the phase portrait is one showed in fig. 6.7.

6.4. The phase portrait focus

The focus is the name for the phase portrait of the system x′ = Ax where the real
2× 2 matrix A has eigenvalues

α± iβ, α 6= 0, β 6= 0, i =
√−1.

In this case any solution has the form

x1(t) = eαt (C1sin(βt) + C2cos(βt)) , x2(t) = eαt (C3sin(βt) + C4cos(βt))

and it is easy to see that if (x1(t), x2(t)) 6≡ (0, 0) then (C1, C2) 6= (0, 0) and
(C3, C4) 6= (0, 0). It follows that any phase curve except the point (0, 0) is a
spiral. The spirals approach (0, 0) as t → ∞ if α < 0. In this case the focus is
called stable. If α > 0 the spirals approach (0, 0) as t → −∞. In this case the focus
is called unstable. See fig. 6.8. In both case of stable or unstable focus the spirals
can get twisted either clockwise or anticlockwise.

A simple way to understand if the spirals get twisted clockwise or anticlockwise is
as follows. Take a point in the positive part of the x1-axes, for example the point
A = (1, 0). From the system we know if x2(t) increases or decreases at this point.
If it increases at A then in the case of stable focus we have fig. 6.8,a2 and in the
case of unstable focus we have fig. 6.8, b1. If x2(t) deccreases at the point A then
we have fig. 6.8,a1 in the case of stable focus and fig. 6.8,b2 in the case of unstable
focus.
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6.4.1. Example. Consider the system

x′ = Ax, A =
(

0 c
b −2

)
,

where b and c are real parameters. The eigenvalues of A are λ1,2 = −1±√1 + bc.
Therefore we have focus if 1+bc < 0. If so, the focus is stable. Since x′2 = bx1−2x2,
at the point A = (1, 0) we have x′2 = b. Therefore if 1 + bc < 0 and b > 0 we have
the phase portrait in fig. 6.8,a2, and if 1 + bc < 0 and b < 0 we have the phase
portrait in fig. 6.8,a1.

6.5. The phase portrait center

The focus is the name for the phase portrait of the system x′ = Ax where the real
2× 2 matrix A has eigenvalues

±iβ, β 6= 0, i =
√−1.

In this case any solution has the form

x1(t) = C1sin(βt) + C2cos(βt), x2(t) = C3sin(βt) + C4cos(βt)

and it is easy to see that if (x1(t), x2(t)) 6≡ (0, 0) then (C1, C2) 6= (0, 0) and
(C3, C4) 6= (0, 0). It follows that any solution except (x1(t), x2(t)) ≡ (0, 0) is a
periodic function.
Consequently any phase curve except the point (0, 0) is a closed curve.

In fact, any phase curve except the point (0, 0) is an ellipse (a circle is a particular
case of an ellipse). To prove this fact we at first consider the standard center which
is the phase portrait of the system

y′ = Qy, Q = Q =
(

0 β
−β 0

)
or equivalently y′1 = βy2, y′2 = −βy1,

The phase portrait of the system y′ = Qy is very simple, it is showed in fig. 6.9.
The phase curves are the circles described by the equation y2

1 + y2
2 = const. To see

it consider the function F (t) = y2
1(t) + y2

2(t) where (y1(t), y2(t)) is a solution of the
system y′ = Qy. Differentiate this function by t: F ′(t) = 2y1(t)y′1(t) + 2y2(t)y′2(t).
Since y′1(t) = βy2(t) and y′2(t) = −βy1(t) we obtain F ′(t) ≡ 0 and consequently
F (t) ≡ const.

Like in the case of a focus, in the case of any center, including the standard cen-
ter in fig. 6.9, the orientation of phase curves might be clockwise (fig. 6.9,b) or
anticlockwise (fig. 6.9.a) and it can be determined in exactly the same way as in
section 6.4. Using this way we see that the phase portrait of the system y′ = Qy is
one in fig. 6.9.b if β > 0 and in fig. 6.9,a if β < 0.

The matrix Q has eigenvalues ±βi, the same as the matrix A. Therefore the
matrices A and Q are similar and consequently the phase portrait of the system
x′ = Ax can be obtained from the phase portrait of the system y′ = Qy by the linear
transformation x = Ty where T is a non-singular matrix such that T−1AT = Q.
It follows that the phase portrait of the system x′ = Ax consists of the curves
which are obtained from the circles y2

1 + y2
2 = const by some non-singular linear

transformation x = Ty. It is well known that any linear transformation of the plane
brings a circle to an ellipse. Therefore the phase portrait of the system x′ = Ax
consists of ellipses (again circle is a particular case of an ellipse). See fig. 6.10.
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Applying a linear transformation x = Ty to the function y2
1 + y2

2 we obtain a
function of the form r1x

2
1 + r2x1x2 + r3x

2
2. Therefore in the case of any center the

phase curves are described by the equation

r1x
2
1 + r2x1x2 + r3x

2
2 = const

with certain r1, r2, r3.

One of the ways to find r1, r2, r3 is to compute the transition matrix T , a non-
singular matrix such that T−1AT = Q. There is a simpler way (from computational
point of view) using the complex numbers. This way is as follows.

We know that A is similar to the matrix D =
(

βi 0
0 −βi

)
, i.e. R−1AR = D for

some non-singular matrix R. We know that R can be chosen to have the columns
v, v̄ where v ∈ C2 is an eigenvector corresponding to the eigenvalue βi. Consider
the system z′ = Dz or equivalently z′1 = βiz1, z′2 = −βiz2. Let z1(t), z2(t) be
any complex-valued solution of this system. Consider the function G(z) = z1z2.
Differentiate it by t: G′(t) = z2z

′
1 + z1z

′
2 ≡ 0. It follows that the phase portrait in

C2 of the system z′ = Dz is described by the equations z1z2 = const. Let

R−1 =
(

u11 u12

u21 u22

)
=⇒ z1 = u11x1 + u12x2, z2 = u21x1 + u22x2.

Then the phase portrait of the system x′ = Ax is described by the equations

z1z2 = const → (u11x1 + u12x2)(u21x1 + u22x2) = const

and it remains to compute the entries uij of the inverse matrix R−1.

6.5.1. Example. Consider the system x′ = Ax, A =
(

2 −1
8 −2

)
. The eigen-

values of A are ±2i. The eigenvector corresponding to the eigenvalue 2i can be

chosen to be
(

1
2(1− i)

)
so that the transition matrix from A to D =

(
2i 0
0 −2i

)

is R =
(

1 1
2(1− i) 2(1 + i)

)
. Compute

(6.5.1) R−1 =
1
4i

(
2(1 + i) −1

2(−1 + i) 1

)
.

The linear transformation x = Rz brings the system x′ = Ax to the system z′ =
Dz whose phase portrait is described by the equations z1z2 = const. We have
z = R−1x, and from (6.5.1) we have

z1 =
1
4i

((2 + 2i)x1 − x2) , z2 =
1
4i

((−2 + 2i)x1 + x2) .

Compute

z1z2 =
1
16

(
8x2

1 − 4x1x2 + x2
2

)
.

Therefore the phase curves of the system x′ = Ax are described by the equations

8x2
1 − 4x1x2 + x2

2 = const.

The phase portrait is showed in fig. 6.11. The orientation is anticlockwise because
at the point A = (1, 0) we have x′2 = 8, therefore x2 increases at the point A.
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6.6. Exercises

1. Draw the phase portrait for the system

x′1 = x2, x′2 = ax1 − 6x2

for the following cases:

(a) a = 7, (b) a = −5, (c) a = −10

2. Draw the phase portrait for the system

x′1 = 3x1 + x2, x′2 = bx1 + ax2

for the following cases:
(a) a = −3, b = −10, (b) a = −3, b = 0,
(c) a = 0, b = −2, (d) a = 0, b = 4, (e) a = 0, b = −9

3. Find the equations for the phase curves (no complex numbers in the final answer)
and draw the phase portrait for the system

x′1 = x1 + cx2, x′2 = −cx1 − x2

for the following cases: (a) c = 2, (b) c = −2.

4*. Draw the phase portrait for the system

x′1 = −x1, x′2 = 0

and use it give a way to draw the phase portrait for the system x′ = Ax where A
is any 2× 2 matrix with the zero eigenvalue and a negative eigenvalue.

5**. Draw the phase portrait for the system

x′1 = −x1 + x2, x′2 = −x2

and use it to give a way to draw the phase portrait for the system x′ = Ax where
A is any non-diagonal 2× 2 matrix with only one negative eigenvalue (of algebraic
multiplicity 2).



CHAPTER 7

Linear homogeneous nth order ODEs
with constant coefficients

7.1. Transferring to a system y′ = Ay.
Qualitative theorem

In this chapter we consider the equations of the form

x(n) + an−1x
(n−1) + an−2x

(n−2) + · · ·+ a2x
′′ + a1x

′ + a0x = 0,

a0, a1, ...an−1 ∈ R
(7.1.1)

where x(i) denotes the ith derivative of the unknown function x = x(t). Such
equations are called linear homogeneous nth order ODE with constant coefficients.
The initial conditions for this equation are as follows:

(7.1.2) x(0) = c0, x′(0) = c1, x′′(0) = c2, · · · , x(n−1)(0) = cn−1

where c0, ..., cn−1 are given real numbers.

Any equation (7.1.1) can be transferred to a system of equations of the form y′ = Ay
with a certain n× n matrix A as follows. Introduce

y1(t) = x(t), y2(t) = x′(t), y3(t) = x′′(t), · · · ,

yn−1(t) = x(n−2)(t), yn(t) = x(n−1)(t).
(7.1.3)

Then

y′1 = y2, y′2 = y3, · · · , y′n−1 = yn

y′n = −a0y1 − a1y2 − · · · − an−1yn.

It means that the vector-function y(t) = (y1(t), ..., yn(t)) satisfies the system

(7.1.4) y′ = Ay, A =




0 1 0 · · · 0 0
0 0 1 · · · 0 0

· · ·
0 0 0 · · · 0 1
−a0 −a1 −a2 · · · −an−2 −an−1




.

The initial conditions (7.1.2) take the form

(7.1.5) y(0) = (c0, c1, . . . , cn−1).

The function x(t) is a solution of (7.1.1) satisfying (7.1.2) if and only if the vector
function y(t) = (y1(t), ..., yn(t) defined by (7.1.3) is a solution of (7.1.4) satisfying
(7.1.5). Therefore the qualitative theorems in Chapter 5, sections 5.1, 5.2 imply
the following theorem.

67
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Theorem 7.1.1. Equation (7.1.1) has a solution x(t) satisfying the initial con-
dition (7.1.2) and defined for all t ∈ R. Such a solution is unique. The set of all
solutions of (7.1.1), defined for all t ∈ R, is a vector space over R of dimension n.

7.2. The characteristic polynomial.
Compact form of equation (7.1.1)

The characteristic polynomial of equation (7.1.1) is the polynomial

(7.2.1) P (λ) = λn + an−1λ
n−1 + · · ·+ a2λ

2 + a1λ + a0.

Given a polynomial (7.2.1) we associate to it the linear operator

P

(
d

dt

)
: C∞(R) → C∞(R)

P

(
d

dt

)
(f(t)) = f (n)(t) + an−1f

(n−1)(t) + · · ·+ a2f
′′(t) + a1f

′(t) + a0f(t).

Equation (7.1.1) can be written in the form

P

(
d

dt

)
(x(t)) = 0

which means that x(t) is a solution of (7.1.1) if and only if this function belongs to
the kernel of the operator P

(
d
dt

)
.

7.3. A basis of the space of all solutions
in the case that P (λ) has n real roots

Theorem 7.3.1. Let λ1 be the root of the polynomial (7.2.1). Then the equation
P

(
d
dt

)
(x(t)) = 0 has a solution x(t) = eλ1t.

Proof. We have (
eλ1t

)(i)
= λi

1e
λ1t

and it follows

P

(
d

dt

)
(eλ1t) = λn

1 eλ1t + an−1λ
n−1
1 eλ1t + · · ·+ a2λ

2
1e

λ1t + a1λ1e
λ1t + a0e

λ1t.

Therefore

(7.3.1) P

(
d

dt

)
(eλ1t) = P (λ1)eλ1t.

If P (λ1) = 0 we obtain P
(

d
dt

)
(eλ1t) = 0. ¤

In the case that P (λ) has n distinct real roots λ1, ..., λn the functions

(7.3.2) eλ1t, . . . , eλnt

are n solutions of equation P
(

d
dt

)
(x(t)) = 0.

Proposition 7.3.2. For any distinct numbers λ1, ..., λn the functions (7.3.2)
are linearly independent over R.
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Proof. Assume that

(7.3.3) r1e
λ1t + · · ·+ rneλnt ≡ 0.

We have to show that r1 = · · · = rn = 0. One of the proofs is as follows. Substitute
t = 0 to (7.3.3). We obtain r1+· · ·+rn = 0. Now differentiate (7.3.3) and substitute
t = 0. We obtain λ1r1 + · · · + λnrn = 0. Differentiating (7.3.3) and substituting
t = 0 we obtain λ2

1r1 + · · ·+λ2
nrn = 0. Continuing till the derivative of order (n−1)

of (7.3.3) we obtain the following linear system for (r1, ..., rn):

Cr = 0, r =




r1

· · ·
rn


 , C =




1 1 · · · 1
λ1 λ2 · · · λn

λ2
1 λ2

2 · · · λ2
n

· · ·
λn−1

1 λn−1
2 · · · λn−1

n




.

The matrix C can be met in many math areas. It is called the Vandermonde matrix.
It is well-known that the determinant C is equal to

∏
1≤i<j≤n(λi − λj) (

∏
is the

sign for the product). Since λ1, .., λn are distinct, detC 6= 0 and the system Cr = 0
has the only solution r = 0. ¤

Theorem 7.3.1 and Proposition 7.3.2 imply the following result.

Theorem 7.3.3. If a degree n polynomial P (λ) has n distinct real roots λ1, ...λn

then the set of functions
eλ1t, . . . , eλnt

is a basis of the space of all solutions of the equation P
(

d
dt

)
(x(t)) = 0.

Example. Let us find the solution of the equation x′′ + x′ − 2x = 0 satisfying the
initial condition x(0) = 1, x′(0) = 0.

The characteristic polynomial P (λ) = λ2+λ−2 has two real roots λ1 = 1, λ2 = −2.
Therefore the set of all solutions of the given equation is x(t) = C1e

t + C2e
−2t.

Substituting t = 0 to x(t) and to x′(t) we obtain

C1 + C2 = 1, C1 − 2c2 = 0.

It follows C1 = 2/3, C2 = 1/3 and consequently x(t) = 1
3 (2et + e−t).

7.4. A basis of the space of all solutions
in the case that P (λ) has n complex roots

Assume now that the characteristic polynomial P (λ) has n distinct roots, but some
of them are not real. Since the coefficients of P (λ) are real, the roots are as follows:

α1 ± iβ1, . . . , αs ± iβs, θ1, . . . , θp

α1, ..., αs, βi, . . . , βs, θ1, ..., θp ∈ R, β1, . . . , βs 6= 0, 2s + p = n.
(7.4.1)

Let us present a basis of all complex-valued solutions of equation P
(

d
dt

)
(x(t)) = 0.

Like in Chapter 5, Theorem 7.1.1 remains true for complex-valued solutions, with
the only difference that they form an n-dimensional vector space over C. Theorem
7.3.1 holds for complex-valued solutions without any change, and Proposition 7.3.2
holds for complex-valued functions 7.3.2 with any complex λi with the only change
that these functions are linearly independent over C. Therefore one of the basis of
the vector space of complex-valued solutions is exactly the same as in section 7.3:
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Theorem 7.4.1. If a degree n polynomial P (λ) has n distinct complex roots
(7.4.1) then the set of complex-valued functions

(7.4.2) e(α1+β1i)t, e(α1−β1i)t, . . . , e(αs+βsi)t, e(αs−βsi)t, eθ1t, ..., eθpt

is a basis of the space of all complex-valued solutions of equation P
(

d
dt

)
(x(t)) = 0.

This basis can be transferred to a basis of the space of all real-valued solutions in the
same way as in Chapter 5: we replace every couple of functions fj = e(α1+β1i)t, gj =
e(α1−β1i)t by the couple fj+gj

2 ,
fj−gj

2i , j = 1, .., s. Since gj = f̄j we obtain n
real-valued functions

Re
(
e(α1+β1i)t

)
, Im

(
e(α1+β1i)t

)
. . . , Re

(
e(αs+βsi)t

)
, Im

(
e(αs+βsi)t

)
,

eθ1t, ..., eθpt.

or equivalently

eα1t (cos (β1t)) , eα1t (sin (β1t)) , . . . , eαst (cos (βst)) , eαst (sin (βst)) ,

eθ1t, ..., eθpt.
(7.4.3)

Each of this function is a solution of the same equation P
(

d
dt

)
(x(t)) = 0, and

these functions are linearly independent over C (and consequently over R) since the
functions (7.4.2) are linearly independent over C. Therefore the following statement
holds:

Theorem 7.4.2. If a degree n polynomial P (λ) has n distinct complex roots
(7.4.1) then the set of n functions (7.4.3) is a basis of the space of all real-valued
solutions of equation P

(
d
dt

)
(x(t)) = 0.

Example. Let us find the solution of the equation x′′′(t) = x(t) satisfying the
initial conditions x(0) = 0, x′()) = 1, x′′(0) = 0.

Write the equation in the form x′′′ − x = 0. The characteristic polynomial is
P (λ) = λ3 − 1. It has three distinct complex roots 1, 1

2 (−1±√3i). Therefore the
set of all solutions is as follows:

x(t) = e−
1
2 t

(
C1cos

(√
3

2
t

)
+ C2sin

(√
3

2
t

))
+ C3e

t.

Substituting t = 0 to x(t), to x′(t), and to x′′(t) we obtain, form the initial condi-
tions, the linear system

C1 + C3 = 0, −1
2
C1 +

√
3

2
C2 + C3 = 1, −1

2
C1 −

√
3

2
C2 + C3 = 0.

Solving this system we obtain C1 = − 1
3 , C2 = 1√

3
, C3 = 1

3 . Therefore the required
solution is as follows:

x(t) =
1
3

(
e−

1
2 t

(
−cos

(√
3

2
t

)
+
√

3sin

(√
3

2
t

))
+ et

)
.
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7.5. A basis of the space of all solutions
in the case that P (λ) has less than n complex roots

To find a basis of the vector space of all solutions in this case, several auxiliary
propositions.

Proposition 7.5.1. For any two polynomials P (λ) and Q(λ) (not necessarily
of the same degree) one has

(PQ)
(

d

dt

)
= P

(
d

dt

)
◦Q

(
d

dt

)

where ◦ denotes the composition of two operators.

Proof. Denote by Di the linear operator sending a function f(t) to its ith
derivative:

Di : C∞(R) → C∞(R), Di(f(t)) = f (i)(t), i ≥ 0.

By f (0) (the zero order derivative of f(t)) we mean the function f(t) itself. Let

P (λ) = a0 + a1λ + · · ·+ akλk, Q(λ) = b0 + b1λ + · · ·+ bsλ
s.

Then

P

(
d

dt

)
= a0D0 + a1D1 + · · ·+ akDk, Q

(
d

dt

)
= b0D0 + b1D1 + · · ·+ bsDs.

Since the operators Di are linear we have

P

(
d

dt

)
◦Q

(
d

dt

)
=

∑
(aibj) ·Di ◦Dj ,

where the sum is taken over all i = 0, ..., k and all j = 0, ..., s.

The product P (λ)Q(λ) can be written in the form

P (λ)Q(λ) =
∑

aibjλ
i+j ,

where as above the sum is taken over all i = 0, ..., k and all j = 0, ..., s. Therefore

(PQ)
(

d

dt

)
=

∑
(aibj)Di+j .

To prove the proposition it remains to note the obvious equation

Di ◦Dj = Di+j

which actually means that the jth derivative of the ith derivative is the derivative
of order i + j. ¤

Remark. Proposition 7.5.1 implies that the ring of all polynomials (of non-fixed
degree) with the usual operations sum and multiplication is isomorphic to the ring of
linear operators of the form f(t) → a0f(t)+a1f

′(t)+ · · ·+akf (k)(t) (with non-fixed
k) with the usual sum of two linear operators and multiplication = composition.
The isomorphism is the map P (λ) → P

(
d
dt

)
.

To formulate the second proposition we need the following notation.

Notation. Given a real or complex number λ1, denote by Lλ1 the linear operator

Lλ1 : C∞(R) → C∞(R), Lλ1(f(t)) = f ′(t)− λ1f(t).
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Denote by Lr
λ1

the composition

Lr
λ1

= Lλ1 ◦ Lλ1 · · · ◦ Lλ1 ( r times ).

Lemma 7.5.2. One has

Lλ1

(
(tieλ1t

)
= i · ti−1eλ1t.

In fact,

Lλ1

(
(tieλ1t

)
=

(
(tieλ1t

)′−λ1t
ieλ1t = i · ti−1eλ1t + λ1t

ieλ1t−λ1t
ieλ1t = i · ti−1eλ1t.

Proposition 7.5.3. For any i ≤ r − 1 one has

Lr
λ1

(
tieλ1t

)
= 0.

Proof. By Proposition 7.5.1 we have

Lr
λ1

(
tieλ1t

)
= Lr−1

λ1

(
Lλ1

(
tieλ1t

))
.

Using Lemma 7.5.2 we obtain

Lr
λ1

(
tieλ1t

)
= i · Lr−1

λ1

(
ti−1eλ1t

)
.

Using again Proposition 7.5.1 and Lemma 7.5.2 we obtain

Lr
λ1

(
tieλ1t

)
= i(i− 1) · Lr−2

λ1

(
ti−2eλ1t

)
.

Continuing to use Proposition 7.5.1 and Lemma 7.5.2 in the same way we obtain

Lr
λ1

(
tieλ1t

)
= i! · Lr−i

λ1

(
eλ1t

)
.

Since i ≤ r − 1 we can use Proposition 7.5.1 one more time:

Lr
λ1

(
tieλ1t

)
= i! · Lr−i−1

λ1

(
Lλ1

(
eλ1t

))

and it remains to note that Lλ1

(
eλ1t

)
= 0. ¤

Propositions 7.5.1 and 7.5.3 allow to present n solutions of equation P
(

d
dt

)
(x(t)) =

0 where P is a polynomial of degree n. Let

deg P = n,

λ1, ..., λs ∈ C are distinct roots of P

r1, ..., rs are their multiplicities

(by the basic theorem of algebra: r1 + · · ·+ rs = n ).

(7.5.1)

Consider the complex-valued functions

eλ1t, teλ1t, . . . , tr1−1eλ1t ( r1 functions)

eλ2t, teλ2t, . . . , tr2−1eλ2t ( r2 functions)
· · ·

eλst, teλst, . . . , trs−1eλst ( rs functions)

(7.5.2)

Proposition 7.5.4. Each of the n functions (7.5.2) is a complex-valued solu-
tion of equation P

(
d
dt

)
(x(t)) = 0.
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Proof. Let j ∈ {1, ..., s}. It is known that if λj is a root of P (λ) of multiplicity
rj then P (λ) = (λ − λj)rj ·Q(λ) for some polynomial Q(λ). By Proposition 7.5.1
we have

P

(
d

dt

) (
tieλjt

)
= Q

(
d

dt

) (
L

rj

λj

(
tieλjt

))
.

If i ≤ rj − 1 then by Proposition 7.5.3 we have L
rj

λj

(
tieλjt

)
= 0 and consequently

P
(

d
dt

) (
tieλjt

)
= 0. ¤

Proposition 7.5.5. The n functions (7.5.2) are linearly independent over C.

The proof of this proposition in the general case is rather technical and we omit it.
Propositions 7.5.4 and 7.5.5 imply:

Theorem 7.5.6. The n functions (7.5.2) is a basic of the vector space of all
complex-valued solutions of equation P

(
d
dt

)
(x(t)) = 0.

If all roots of the polynomial P (λ) are real then each of the functions (7.5.2) is real-
valued and these n functions are also a basis of the vector space of all real-valued
solutions. If some of the roots are not real then these roots come in couples α± βi
and these complexly-conjugate roots have the same multiplicity. In this case we
can transfer (7.5.2) to a basis of the vector space of all real-valued solutions in the
same way as in section 7.4.

Example. Consider the equation

x15 − 2x(9) + x′′′ = 0.

The characteristic polynomial is

P (λ) = λ15 − 2λ9 + λ3 = λ3(λ6 − 1)2 = λ2(λ3 − 1)2(λ3 + 1)2.

The equation λ3−1 = 0 has complex solutions 1,− 1
2±

√
3

2 i. The equation λ3+1 = 0
has complex solutions −1, 1

2±
√

3
2 i. Therefore the polynomial P (λ) has the following

roots:
root 0 of multiplicity 3;

roots ±1, − 1
2 ±

√
3

2 i, 1
2 ±

√
3

2 i each of multiplicity 2.
By Theorem 7.5.6 the vector space of all complex-valued solutions of equation
P

(
d
dt

)
(x(t)) = 0 has a basis

f1 = 1, f2 = t, f3 = t2, f4 = et, f5 = tet, f6 = e−t, f7 = te−t,

f8 = e

(
− 1

2+
√

3
2 i

)
t
, f9 = f̄8 = e

(
− 1

2−
√

3
2 i

)
t
,

f10 = te

(
− 1

2+
√

3
2 i

)
t
, f11 = f̄10 = te

(
− 1

2−
√

3
2 i

)
t

f12 = e

(
1
2+

√
3

2 i
)

t
, f13 = f̄12 = e

(
1
2−

√
3

2 i
)

t
,

f14 = te

(
1
2+

√
3

2 i
)

t
, f15 = f̄14 = te

(
1
2−

√
3

2 i
)

t
.

To transfer this basis to a basis of all real-valued solutions we replace the
couple f8, f9 to f8+f9

2 = Ref8,
f8−f9

2i = Imf8 and we do the same with the couples
(f10, f11), (f12, f13), (f14, f15). We obtain the following basis of the vector space
of all real-valued solutions:
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1, t, t2, et, tet, e−t, te−t,

e−
1
2 tcos

(√
3

2
t

)
, e−

1
2 tsin

(√
3

2
t

)
, e

1
2 tcos

(√
3

2
t

)
, e

1
2 tsin

(√
3

2
t

)

te−
1
2 tcos

(√
3

2
t

)
, te−

1
2 tsin

(√
3

2
t

)
, te

1
2 tcos

(√
3

2
t

)
, te

1
2 tsin

(√
3

2
t

)

7.6. Exercises

1. Find the solution of the equation x′′−2x′+ax = 0 satisfying the initial conditions
x(0) = 1, x′(0) = 0. Here a is a real parameter. No complex numbers in the final
answer.

2. Find the solution of the equation x′′′′(t) = ax(t) satisfying the initial conditions
x(0) = 1, x′(0) = 0, x′′(0) = 0, x′′′(0) = 0 for the cases: (a) a = 1, (b) a = −1.
No complex numbers in the final answer.

3. Find a basis of the vector space of all real-valued solutions of the equation
P

(
d
dt

)
(x(t)) = 0 where P (λ) = (λ2 − λ + a)3(λ2 + b)2. Here a and b are real

parameters. No complex numbers in the final answer.

4. Consider the equation x′′ + ax′ + bx = 0 with real parameters a, b. Give a
necessary and sufficient condition on the pair (a, b) under which:

(a) any non-constant solution is periodic

(b) any solution tends to 0 as t →∞
(c) any solution tends to 0 as t → −∞.

5. Give a necessary and sufficient condition on the roots of a polynomial P (λ) (of
any degree) and their multiplicities under which the equation P

(
d
dt

)
(x(t)) = 0 has

the following property:

(a) any non-constant solution is periodic

(b) any solution tends to 0 as t →∞
(c) any solution tends to 0 as t → −∞.

6. Prove that the functions et, e−t, tet, te−t are linearly independent over R.



CHAPTER 8

Linear homogeneous and non-homogeneous
ODEs and system of ODES

8.1. Qualitative theorems

This chapter is devoted to the equations of the form

(8.1.1) x(n)+an−1(t)x(n−1)+· · ·+a2(t)x′′(t)+a1(t)x′(t)+a0(t)x(t) = 0, x = x(t)

(8.1.2) x(n) + an−1(t)x(n−1) + · · ·+ a2(t)x′′(t) + a1(t)x′(t) + a0(t)x(t) = f(t)

which are called homogeneous (equation (8.1.1)) and non-homogeneous (equation
(8.1.2)) linear nth order ODEs (in general with non-constant coefficients, the case
ai(t) ≡ ai = const is a particular case), and to the systems of the form

(8.1.3) y′ = A(t)y, y = y(t) =




y1(t)
· · ·

yn(t)


 , A(t) =




A11(t) · · · A1n(t)
· · ·

An1(t) · · · Ann(t)




(8.1.4) y′ = A(t)y + F (t) F (t) =




f1(t)
· · ·

fn(t)




which are called homogeneous (system (8.1.3)) and non-homogeneous (system (8.1.4))
linear systems of ODEs of order 1 (in general with non-constant coefficients, the
case that A(t) is a constant matrix is a particular case).

The word “linear” corresponds to the following very simple property of the solu-
tions:

Theorem 8.1.1. The set of all solutions of equation (8.1.1) or system (8.1.3)
defined on as fixed interval t ∈ (α, β) is a vector space over R (a subspace of
differentiable functions or vector-functions). The set of all solutions of (8.1.2)
has the form x∗(t) + xh(t), where x∗(t) is any fixed (particular) solution of this
equation and xh(t) is an arbitrary solution of the homogeneous equation (8.1.1)
with the same coefficients. Similarly, the set of all solutions of system (8.1.4) has
the form y∗(t) + yh(t), where y∗(t) is any fixed (particular) solution of this system
and yh(t) is an arbitrary solution of the homogeneous system (8.1.3) with the same
matrix A(t).

Proof. The sum of two solutions of a homogeneous equation or system is also a
solution of the same equation or system. Multiplying any solution of a homogeneous
equation or system by a real number we obtain a function or vector-function which is

75
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also a solution. The difference of any two solutions of a non-homogeneous equation
or system is a solution of the corresponding homogeneous equation or system. ¤

Theorem 8.1.2. Assume that the coefficients Aij(t) of the matrix A(t) in
(8.1.3) or (8.1.4) are continuous functions on the interval t ∈ (α, β).

1. For any t0 ∈ (α, β) and any y0 ∈ Rn system (8.1.3) has a unique solution defined
for t ∈ (α, β) and satisfying the initial condition y(t0) = y0.

2. The same holds for system (8.1.4) provided that F (t) in (8.1.4) is a continuous
vector function on (α, β).

3. The set of all solutions of (8.1.3) defined for t ∈ (α, β) is a vector space over R
of dimension n.

I will not prove the first statement, but using it I will prove, in this chapter, the
second and the third statement. Theorem 8.1.2 implies a similar theorem for linear
nth order equations.

Theorem 8.1.3. Assume that the coefficients ai(t) in (8.1.1) or (8.1.2) are
continuous functions on the interval t ∈ (α, β).

1. For any t0 ∈ (α, β) and any tuple c0, c1, ..., cn−1 ∈ Rn equation (8.1.1) has a
unique solution defined for t ∈ (α, β) and satisfying the initial condition

x(t0) = c0, x
′(t0) = c1, ..., x

(n−1)(t0) = cn−1.

2. The same holds for equation (8.1.2) provided that f(t) in (8.1.2) is a continuous
vector function on (α, β).

3. The set of all solutions of (8.1.1) defined for t ∈ (α, β) is a vector space over R
of dimension n.

Theorem 8.1.3 from Theorem 8.1.2. Theorem 8.1.2 implies Theorem 8.1.3
because equation (8.1.1) or (8.1.2) can be transferred to system (8.1.3) or (8.1.4)
with

A(t) =




0 1 0 · · · 0 0
0 0 1 · · · 0 0

· · ·
0 0 0 · · · 0 1

−a0(t) −a1(t) −a2(t) · · · −an−2(t) −an−1(t)




, F (t) =




0
0
· · ·
0

f(t)




by introducing, exactly as in section 7.1, the vector function

y(t) =




x(t)
x′(t)
x′′(t)
· · ·

x(n−1)(t)




Proof of statement 3. of Theorem 8.1.2. The proof is exactly that same
as the proof of Theorem 5.2.1 in section 5.2: in the proof of that theorem we did
not use that matrix A is constant. The only difference is that instead of solutions
defined for all t we work with solutions defined for t ∈ (α, β). In exactly the
same way as in the proof of Theorem 5.2.1 we use the existence and uniqueness of
solutions satisfying a fixed initial condition (the first statement of Theorem 8.1.2).
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8.2. From a basis of solutions of homogeneous system
to a solution of non-homogeneous system

Assume that the entries Aij(t) of A(t) and the vector function F (t) in (8.1.4) are
continuous on (α, β) and assume that we know a basis of the vector space of all
solutions of the homogeneous system (8.1.3) defined on (α, β):

basis of the vector space of solutions of (8.1.3):

y(1)(t) =




y
(1)
1 (t)
· · ·

y
(1)
n (t)


 , . . . , y(n)(t) =




y
(n)
1 (t)
· · ·

y
(n)
n (t)




(8.2.1)

We can find a particular solution y∗(t) of system (8.1.3), and consequently the set
of all solutions of this system (see Theorem 8.1.1) by the following simple way,
called the method of variation of parameters.

The set of all solutions of (8.1.3), defined for t ∈ (α, β) is the set of arbitrary linear
combinations of the vector functions (8.2.1):

C1y
(1)(t) + C2y

(2)(t) + · · ·+ Cny(n)(t), C1, ..., Cn ∈ R.

We will show that the non-homogeneous system (8.1.4), with the same matrix A(t)
as in (8.1.3) has a particular solution y∗(t) of the form

(8.2.2) y∗(t) = C1(t)y(1)(t) + C2(t)y(2)(t) + · · ·+ Cn(t)y(n)(t),

with some functions C1(t), ..., Cn(t) instead of the constants C1, ..., Cn (which ex-
plains the name “variation of parameters”). Certainly these functions are not ar-
bitrary, they must satisfy certain conditions. To give these conditions consider the
n× n matrix with the columns (8.2.1), i.e. the matrix

(8.2.3) W (t) =




y
(1)
1 (t) y

(2)
1 (t) · · · y

(n)
1 (t)

y
(1)
2 (t) y

(2)
2 (t) · · · y

(n)
2 (t)

· · ·
y
(1)
n (t) y

(2)
n (t) · · · y

(n)
n (t)




It is called the matrix of Wronski corresponding to basis (8.2.1).

Theorem 8.2.1. Assume that the entries of A(t) are continuous functions on
(α, β) and (8.2.1) is a basis of the vector space of all solutions of the homogeneous
system (8.1.3) defined for t ∈ (α, β). For any t ∈ (α, β) one has: detW (t) 6= 0.

Proof. Let t0 ∈ (α, β). To prove that detW (t0) 6= 0 is the same as to prove
that the vectors y(1)(t0), ..., y(n)(t0) ∈ Rn are linearly dependent, i.e. the equation
r1y

(1)(t0)+· · ·+rny(n)(t0) = 0 implies r1, ..., rn = 0. The function y(t) = r1y
(1)(t)+

· · ·+ rny(n)(t) is a solution of the homogeneous system (8.1.3) satisfying y(t0) = 0.
The uniqueness theorem (the first statement of theorem 8.1.3) implies y(t) ≡ 0
which means that the linear combination of the vector functions (8.2.1) is zero
(which is much stronger than the zero linear combination of the vectors in Rn, the
values of these functions at t0). Since these vector-functions form a basis they are
linearly independent over R and consequently r1 = · · · = rn = 0. ¤
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Theorem 8.2.2. Let C1(t), ..., Cn(t) be differentiable functions whose deriva-
tives satisfy the linear system

(8.2.4) W (t) ·



C ′1(t)
· · ·

C ′n(t)


 = F (t) =




f1(t)
· · ·

fn(t)


 , t ∈ (α, β)

Then the vector function (8.2.2) is a solution of the non-homogeneous equation
(8.1.4).

Remark. System (8.2.4) is a system of usual linear equations with respect to the
tuple (C ′1(t), ..., C

′
n(t)). Theorem 8.2.1 implies that this linear system has unique

solution (C ′1(t), ..., C
′
n(t)). Integrating these functions we obtain C1(t), ..., Cn(t).

We need one particular solution, therefore we can take any anti-derivatives.

Proof. We have

(y∗(t))′ = C ′1(t)y
(1)(t) + C ′2(t)y

(2)(t) + · · ·+ C ′n(t)y(n)(t)+

+C1(t)(y(1))′(t) + C2(t)(y(2))′(t) + · · ·+ Cn(t)(y(n))′(t).

Since y(i)(t) is a solution of the homogeneous system (8.1.3) we have (y(i))′(t) =
A(t)y(i)(t), i = 1, ..., n and consequently

(y∗(t))′ = C ′1(t)y
(1)(t) + C ′2(t)y

(2)(t) + · · ·+ C ′n(t)y(n)(t)+

+C1(t)A(t)y(1)(t) + · · ·+ Cn(t)A(t)y(n)(t) =

= C ′1(t)y
(1)(t) + C ′2(t)y

(2)(t) + · · ·+ C ′n(t)y(n)(t) + A(t)y∗(t).

It remains to note that system (8.2.4) implies C ′1(t)y
(1)(t) + C ′2(t)y

(2)(t) + · · · +
C ′n(t)y(n)(t) = F (t). Therefore (y∗(t))′ = Ay∗(t) + F (t). ¤

8.3. From a basis of solutions of homogeneous nth order
equation to a solution of non-homogeneous equation

Assume that the coefficients ai(t) and the vector function f(t) in (8.1.2) are contin-
uous on (α, β) and assume that we know a basis of the vector space of all solutions
of the homogeneous equation (8.1.1) defined on (α, β):

basis of the vector space of solutions of (8.1.1):

x1(t), x2(t), . . . , xn(t)
(8.3.1)

We can find a particular solution x∗(t) of system (8.1.1), and consequently the set
of all solutions of this system (see Theorem 8.1.1) by the following simple way, also
called the method of variation of parameters.

The set of all solutions of (8.1.1), defined for t ∈ (α, β) is the set of arbitrary linear
combinations of the vector functions (8.3.1):

C1x1(t) + C2x2(t) + · · ·+ Cnxn(t), C1, ..., Cn ∈ R.

We will show that the non-homogeneous system (8.1.4), with the same matrix A(t)
as in (8.1.3) has a particular solution y∗(t) of the form

(8.3.2) x∗(t) = C1(t)x1(t) + C2(t)x2(t) + · · ·+ Cn(t)xn(t),
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with some functions C1(t), ..., Cn(t) instead of the constants C1, ..., Cn (which ex-
plains the name “variation of parameters”). Certainly these functions are not ar-
bitrary, they must satisfy certain conditions. To give these conditions consider the
n× n matrix

(8.3.3) W (t) =




x1(t) x2(t) · · · xn(t)
x′1(t) x′2(t) · · · x′n(t)
x′′1(t) x′′2(t) · · · x′′n(t)

· · ·
x

(n−1)
1 (t) x

(n−1)
2 (t) · · · x

(n−1)
n (t)




It is called the matrix of Wronski corresponding to basis (8.3.1).

Theorem 8.3.1. Assume that the coefficients ai(t) of the homogeneous equation
(8.1.1) are continuous functions on (α, β) and (8.3.1) is a basis of the vector space
of all solutions of (8.1.1) defined for t ∈ (α, β). Consider the matrix (8.3.3). For
any t ∈ (α, β) one has: detW (t) 6= 0.

Proof. Transfer (8.1.1) to a homogeneous system (8.1.3), see section 8.1. The
columns of matrix form a basis of the vector space of all solutions of this system
defined on (α, β). Therefore Theorem 8.3.1 follows from Theorem 8.2.1.

¤

Theorem 8.3.2. Let C1(t), ..., Cn(t) be differentiable functions whose deriva-
tives satisfy the linear system

(8.3.4) W (t) ·




C ′1(t)
C ′2(t)
· · ·

C ′n−1(t)
C ′n(t)




=




0
0
· · ·
0

f(t)




, t ∈ (α, β)

where W (t) is the matrix (8.3.3). Then the function (8.3.2) is a solution of the
non-homogeneous equation (8.1.2).

Proof. Transfer (8.1.2) to a system (8.1.4), see section 8.1. Any solution of
(8.1.2) is the first coordinate of a solution of (8.1.4). Therefore Theorem 8.3.2
follows from Theorem 8.2.2. ¤

8.4. Solving equation x′ = a(t)x + b(t)

Assume that the functions a(t) and b(t) are continuous on (α, β). Take any point
t0 ∈ (α, β) and consider the function

A(t) = e
∫ t

t0
a(s)ds

.

Its derivative is equal to A′(t) = a(t)A(t), therefore the single function A(t) is a
basis of the 1-dimensional vector space of all solution of the homogeneous equation
x′ = a(t)x, defined on (α, β):

any solution of the equation x′ = a(t)x has the form x(t) = C ·A(t) for some C ∈ R
(changing t0 ∈ (α, β) leads to changing C).
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By Theorem 8.3.2 (or Theorem 8.2.2) with n = 1 the equation x′ = a(t)x + b(t)
has a solution x∗(t) = C(t)A(t) where C(t) satisfies the equation C ′(t)A(t) = b(t).
One of the solutions of the equation for C(t) is

C(t) =
∫ t

t0

b(s)
A(s)

ds.

Therefore the set of all solutions of the equation x′ = a(t)x + b(t) is as follows:

x(t) = A(t) ·
∫ t

t0

b(s)
A(s)

ds + C ·A(t) = A(t)
(

C +
∫ t

t0

b(s)
A(s)

ds

)

A(t) = e
∫ t

t0
a(s)ds

.

If we have initial condition x(t0) = x0 it is convenient (though not necessary) to
take t0 namely from this initial condition. Since A(t0) = 1 and the integral from t0
to t0 vanishes we obtain, substituting t0: C = x0.

Example. Let us find solution of the equation

x′ =
x√
t

+ sin t

satisfying the initial condition x(1) = 3 and defined for t > 0. We have

A(t) = e
∫ t
1

ds√
s = e2

√
t−2.

Therefore

x(t) = e2
√

t−2

(
3 +

∫ t

1

sins · e2−2
√

sds

)
= e2

√
t

(
3e−2 +

∫ t

1

sins · e−2
√

sds

)
.

8.5. Solving non-homogeneous system (8.1.4)
with a constant matrix A (example)

We know how to find a basis of the space of all solutions of any system y′ = Ay
(Chapter 5), therefore we can solve any system of the form y′ = Ay + F (t) with a
constant matrix A.

Let us find solution of the system

(8.5.1) y′1 = y1 − y2 +
√

t2 + 1, y′2 = 10y1 + 3y2 + t

defined for all t and satisfying the initial condition y1(0) = 1, y2(0) = 0.

Write the system in the form y′ = Ay + F (t), where A =
(

1 −1
10 3

)
and F (t) =

(√
t2 + 1

t

)
. The eigenvalues of A are 2± 3i. Take the eigenvectors

( −1
1± 3i

)
. The

complexly conjugate functions

z1(t) = e(2+3i)t ·
( −1

1 + 3i

)
, z2(t) = z̄(1)(t) = e(2−3i)t ·

( −1
1− 3i

)

is a basis of the vector space of all complex-valued solutions of the homogeneous
system y′ = Ay. The functions

y(1)(t) = Re

(
e(2+3i)t ·

( −1
1 + 3i

))
, y(2)(t) = Im

(
e(2+3i)t ·

( −1
1 + 3i

))
,



8.6. SOLVING NON-HOMOGENEOUS EQUATION (??) WITH CONSTANT COEFFICIENTS ai (EXAMPLE)81

i.e.

y(1)(t) = e2t

( −cos(3t)
cos(3t)− 3sin(3t)

)
, y(2)(t) = e2t

( −sin(3t)
sin(3t) + 3cos(3t)

)
.

By Theorem 8.2.2 equation (8.5.1) has a solution y∗(t) = C1(t)y(1)(t)+C2(t)y(2)(t)
where C1(t) and C2(t) are any functions satisfying the system

W (t) ·
(

C ′1(t)
C ′2(t)

)
=

(√
t2 + 1

t

)
,

W (t) =
( −e2tcos(3t) −e2tsin(3t)

e2t (cos(3t)− 3sin(3t)) e2t (sin(3t) + 3cos(3t))

)

Solving this linear system (with unknowns C ′1(t), C
′
2(t)) it is convenient to use

Cramer’s rule. We have det(W (t)) = −3e4t and by Cramer’s rule

C ′1(t) = −1
3
e−2t

(√
t2 + 1 (sin(3t) + 3cos(3t)) + tsin(3t)

)
,

C ′2(t) = −1
3
e−2t

(√
t2 + 1 (−cos(3t) + 3sin(3t))− tcos(3t)

)
.

Since the initial conditions are given at t0 = 0, it is convenient to take the following
anti-derivatives:

C1(t) = −1
3

∫ t

0

e−2s
(√

s2 + 1 (sin(3s) + 3cos(3s)) + s · sin(3s)
)

ds

C2(t) = −1
3

∫ t

0

e−2s
(√

s2 + 1 (−cos(3s) + 3sin(3s))− s · cos(3s)
)

.

(8.5.2)

The general solution of the system (8.5.1) is

y(t) = (c1 + C1(t)) e2t

( −cos(3t)
cos(3t)− 3sin(3t)

)
+

+(c2 + C2(t)) e2t

( −sin(3t)
sin(3t) + 3cos(3t)

)(8.5.3)

where c1, c2 are arbitrary real numbers and the functions C1(t) and C2(t) are given
by (8.5.2). Substituting the initial condition y1(0) = 1, y2(0) = 0 we obtain
a system of linear equations for c1, c2: −c1 = 1, c1 + 3c2 = 0. Therefore the
solution satisfying the given initial condition is given by the formula (8.5.3) with
c1 = −1, c2 = 1/3 and C1(t), C2(t) defined by (8.5.2).

8.6. Solving non-homogeneous equation (8.1.2)
with constant coefficients ai (example)

We know how to find a basis of the space of all solutions of any linear homogeneous
nth order equation with constant coefficients (Chapter 7), therefore we can solve
any equation of form (8.1.2) with constant ai and any function f(t).

Let us find solution of the equation

(8.6.1) x′′ − 2x′ + 5x =
√

t

defined for t > 0 and satisfying the initial conditions x(1) = 0, x′(1) = 1.

The vector space of all solutions of the homogeneous equation

x′′ − 2x′ + 5x = 0
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defined for t > 0 has a basis

x1(t) = etcos(2t), x2(t) = etsin(2t).

By Theorem 8.3.2 equation (8.6.1) has a solution x∗(t) = C1(t)x1(t) + C2(t)x2(t))
where C1(t) and C2(t) are any functions satisfying the system

W (t) ·
(

C ′1(t)
C ′2(t)

)
=

(
0√
t

)
,

W (t) =
(

etcos(2t) etsin(2t)
et (cos(2t)− 2sin(2t)) et (sin(2t) + 2cos(2t))

)

Solving this linear system (with unknowns C ′1(t), C
′
2(t)) it is convenient to use

Cramer’s rule. We have det(W (t)) = 2e2t and by Cramer’s rule

C ′1(t) = −1
2
e−t

√
t · sin(2t), C ′2(t) =

1
2
e−t

√
t · cos(2t).

It follows that the set of all solutions of the equation (8.6.1) is as follows:

x(t) =
(

c1 − 1
2

∫ t

1

e−s
√

s · sin(2s)ds

)
etcos(2t)+

+
(

c2 +
1
2

∫ t

1

e−s
√

s · cos(2s)ds

)
etsin(2t),

where c1, c2 are arbitrary real numbers. Substituting the initial conditions x(1) =
0, x′(1) = 1 we obtain the following linear system for c1, c2:

cos2 · c1 + sin2 · x2 = 0

(cos2− 2sin2)c1 + (sin2 + 2cos2)c2 = e−1.

Solving this system we obtain

c1 = −sin2
2e

, c2 =
cos2
2e

.

8.7. The cases when a partial solution can be found directly
without variation of parameters

In this section we present the most important cases that we do not need rather long
computations realizing the method of variation of parameters.

8.7.1. Equation x′ = ax + b, a, b ∈ R, a 6= 0. Obviously one of solutions is

x∗(t) ≡ − b

a

8.7.2. Systems y′ = Ay + b, detA 6= 0, b ∈ Rn. Obviously one of solutions is

y∗(t) ≡ −A−1b.

8.7.3. Equations of the form P
(

d
dt

)
(x(t)) = eαt where α is not a root of

P (λ). In chapter 7 we showed that P
(

d
dt

)
(eαt) = P (α)eαt. Therefore the equation

in the title of this subsection has a solution

x∗(t) =
eαt

P (α)
.
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8.7.4. Equations of the form P
(

d
dt

)
(x(t)) = eαt where α is not root of

P (λ) of multiplicity r. In this case the polynomial P (λ) can be expressed in the
form

(8.7.1) P (λ) = Q(λ)(λ− α)r, Q(λ) polynomial, Q(α) 6= 0.

Consider the linear operator

Lα : f(t) → f ′(t)− α · f(t).

By Proposition 7.5.1 we have

P

(
d

dt

)
(treαt) = Q

(
d

dt

) (
Lr

α(treαt)
)

where Lr
α is Lα ◦ Lα ◦ · · · ◦ Lα (r times). Lemma 7.5.2 implies

Lr
α(treαt) = r!eαt.

Therefore

P

(
d

dt

)
(treαt) = r!Q

(
d

dt

)
(eαt) = r!Q(α)eαt.

It follows that the equation in the title of this subsection has a solution

x∗(t) =
treαt

r!Q(α)
.

Note that
r!Q(α) = P (r)(α).

Therefore the same solution can be expressed in the form

x∗(t) =
treαt

P (r)(α)
.

8.7.5. Equations of the form
P

(
d
dt

)
(x(t)) = eαtcos(βt) and P

(
d
dt

)
(x(t)) = eαtsin(βt). Consider the equation

(8.7.2) P

(
d

dt

)
(z(t)) = e(α+βi)t

with respect to a complex-valued function z(t). Since

eαtcos(βt) = Re
(
e(α+iβ)t

)
, eαtsin(βt) = Im

(
e(α+iβ)t

)

the equations in the title of this subsection have solutions

x∗(t) = Re(z∗(t)), x∗(t) = Im(z∗(t))

respectively, where z∗(t) is one of solutions of equation (8.7.2). The solution z∗(t)
can be found in the same way as in section 8.7.4 or 8.7.5, with α in those sections
replaced by α + βi. If α + βi is not a root of the polynomial P (λ) we have

z∗(t) =
e(α+βi)t

P (α + βi)

If α + βi is a root of the polynomial P (λ) of multiplicity r we can express P (λ) in
the form P (λ) = Q(λ)(λ− (α + βi))r and we have

z∗(t) =
tre(α+βi)t

r!Q(α + βi)
=

tre(α+βi)t

P (r)(α + βi)
.
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8.7.6. Equations of the form P
(

d
dt

)
(x(t)) = r1f(t)+ · · ·+rsfs(t). Assume

that we can find a solution x∗i (t) of the equations P
(

d
dt

)
(x(t)) = fi(t), i = 1, ..., s.

It is clear that the function

x∗(t) = r1x1(t) + · · ·+ rsxs(t)

is a solution of the equation in the title of this subsection.

8.7.7. Example. Let us find a partial solution x∗(t) of the linear order 6 ODE

P

(
d

dt

)
(x(t)) = 2ectsint + 5cost, P (λ) = (λ2 + 6λ + 10)(λ2 + 1)2.

Here c ∈ R is a parameter. We have

x∗(t) = x∗1(t) + x∗2(t),

x∗1(t) = 2Im(z∗1(t)), x∗2(t) = 5Re(z∗2(t)),
where

z∗1(t) is a solution of the equation P

(
d

dt

)
(z(t)) = e(c+i)t,

z∗2(t) is a solution of the equation P

(
d

dt

)
(z(t)) = eit.

The polynomial P (λ) has roots −3 ± i of multiplicity 1 and ±i of multiplicity 2.
Therefore

z∗1(t) =
e(c+i)t

P (c + i)
if c 6= −3, c 6= 0

z∗1(t) =
te(−3+i)t

P ′(−3 + i)
if c = −3

z∗1(t) =
t2eit

P ′′(i)
if c = 0

z∗2(t) =
t2eit

P ′′(i)
.

Compute (which takes around 10 minutes)

P (c + i) = c2(c + 3)
(
c3 + 3c2 − 12c− 12 +

(
6c2 + 12c− 8

)
i
)
.

To compute P ′′(i) takes less time:

P ′′(i) = 2!
(
λ2 + 6λ + 10

)
λ=i

= 6 · (3 + 2i).

We also need to compute P ′(−3 + i). To compute it express P (λ) in the form

P (λ) = (λ + 3− i)Q(λ), Q(λ) = (λ + 3 + i)(λ2 + 1)2.

It follows
P ′(−3 + i) = Q(−3 + i) = 18(12 + 5i).

In the case c 6= 0, c 6= −3 we have

x∗1(t) = 2Im

(
ect(cost + isint)

c2(c + 3)((c3 + 3c2 − 12c− 12 + (6c2 + 12c− 8) i)

)
=

=
2ect(−D1cost + D2sint)

D3

where D1 = 6c2 + 12c− 8, D2 = c3 + 3c2 +−12c− 12, D3 = c2(c + 3)(D2
1 + D2

2).
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If c = −3 we have

x∗1(t) = 2Im

(
te−3t(cost + isint)

18(12 + 5i)

)
=

te−3t

9 · (122 + 52)
(−5cost + 12sint) .

For c = 0 we have

x∗1(t) = 2Im

(
t2(cost + isint)

6(3 + 2i)

)
=

t2

39
(−2cost + 3sint) .

Finally, x∗2(t) does not depend on c and we have

x∗2(t) = 5Re

(
t2(cost + isint)

6(3 + 2i)

)
=

5t2

6 · 13
(3cost + 2sint) .

8.8. The Euler equation

The homogeneous linear equation of the form

(8.8.1) t2x′′ + btx′ + cx = 0, x = x(t), b, c ∈ R
is called the Euler equation. This equation does not have the form (8.1.1), but can
be brought to this form by dividing by t2. We obtain an equation of form (8.1.1)
whose coefficients are continuous function in any interval which does not contain
the point t = 0. Therefore the qualitative theorems of section 8.1 hold for equation
(8.8.1) in the time interval t > 0 or t < 0. We will consider the case t > 0.

The special form of equation (8.8.1) allows to find a solution in the simple form
x(t) = tr. Substituting x = tr to the equation we see that this function is a solution
if and only if the number r satisfies the square equation

(8.8.2) r(r − 1) + br + c = 0.

It is very easy to prove (an exercise) that the functions tr1 and tr2 are linearly
independent over R provided r1 6= r2. Therefore the following statement holds.

Theorem 8.8.1. If equation (8.8.2) has two real distinct solutions r1, r2 then
the couple of functions

x1(t) = tr1 , x2(t) = tr2

is a basis of the vector space of all solutions of equation (8.8.1) defined for t > 0.

If equation (8.8.2) has two non-real solutions r1,2 = α ± βi, β 6= 0 then Theorem
8.8.1 holds for complex-valued solutions. To understand the function tr for non-real
r write it in the form

r = α + βi =⇒ tr = erln t = e(α+βi)ln t = eαln t · ei(β ln t) =

= tα (cos(βln t) + isin(βln t)) .

Therefore in the case that equation (8.8.2) has solutions r1,2 = α ± βi, β 6= 0 the
couple of complexly conjugated functions

z1(t) = tα (cos(βln t) + isin(βln t)) , z2(t) = z̄1(t) = tα (cos(βln t) + isin(βln t))
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is a basis of the vector space of all complex-valued solutions defined for t > 0. To
obtain a basis of the vector space of real valued solutions we replace z1(t) and z2(t)
b he real valued functions

x1(t) = (z1 + z2)/2 = Re(z1(t)) = tα (cos(βln t)) ,

x2(t) = (z1 − z2)/(2i) = Im(z1(t)) = tα (sin(βln t)) .
(8.8.3)

We obtain:

Theorem 8.8.2. If equation (8.8.2) has two solutions r1,2 = α ± βi, β 6= 0
then the couple of functions

x1(t) = tα (cos(βln t)) , x2(t) = tα (cos(βln t))

is a basis of the vector space of all solutions of equation (8.8.1) defined for t > 0.

It remains the case that equation 8.8.2 has only one solution, of multiplicity 2.

Theorem 8.8.3. If equation 8.8.2 has only one solutions r1 (of multiplicity 2)
then the couple of functions

x1(t) = tr1 , x2(t) = tr1 ln t

is a basis of the vector space of all solutions of equation (8.8.1) defined for t > 0.

This theorem is proved (and explained) in the next section because it requires a
theorem on reduction of order of a linear equation.

Example. Let us find the set of all solutions of the equation

(8.8.4) t2x′′ + 3tx′ + 5x = t2.

defined for t > 0. At first we should find the set of all solutions of the equation

(8.8.5) t2x′′ + 3tx′ + 5x = 0.

It is the Euler equation. Substituting x = tr we obtain that it is a solution if and
only if r(r− 1) + 3r + 5 = 0, i.e. r = −1± 2i. It follows that the set of all solutions
of (8.8.4) is

c1x1(t) + c2x2(t) + x∗(t), c1, c2 ∈ R
where

x1(t) =
1
t
cos(2ln t), x2(t) =

1
t
sin(2ln t)

and x∗(t) is any partial solution. To find x∗(t) we use the method of variation of
parameters. We write equation 8.8.4 in the form

(8.8.6) x′′ +
3
t
x′ +

5
t2

x = 1.

Since t > 0, the corresponding homogeneous equation x′′+ 3
t x
′+ 5

t2 x = 0 is equiva-
lent to (8.8.5), therefore x1(t), x2(t) is a basis of the vector space of all solutions of
this homogeneous equation. A particular solution x∗(t) of equation (8.8.6), which
is equivalent to (8.8.4) because t > 0, has the form

x∗(t) = C1(t)x1(t) + C2(t)x2(t),

where the derivatives of the functions C1(t) and C2(t) satisfy the linear system

W (t)
(

C ′1(t)
C ′2(t)

)
=

(
0
1

)
.
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Here W (t) is the matrix of Wronski defined by the basis x1(t), x2(t) of the vector
space of all solutions of the homogeneous equation (8.8.5):

W (t) =
(

x1(t) x2(t)
x′1(t) x′2(t)

)
=

(
1
t cos(2ln t) 1

t sin(2ln t)
− 1

t2 (cos(2ln t) + 2sin(2ln t)) 1
t2 (−sin(2ln t) + 2cos(2ln t))

)

We have detW (t) = 2
t3 . Using Cramer’s rule we obtain

C ′1(t) = − t2

2
sin(2 ln t), C ′2(t) =

t2

2
cos(2 ln t).

Therefore the set of all solutions of equation (8.8.4) can be expressed as follows:

x(t) =
c1ċos(2ln (t))

t
+

c2ṡin(2ln (t))
t

−

−cos(2ln t)
2t

·
∫ t

1

s2sin(2 ln s)ds +
sin(2ln t)

2t
·
∫ t

1

s2cos(2 ln s)ds, c1, c2 ∈ R.

8.9. Reduction of order

Assume that we know a non-zero solution x1(t) of a linear homogeneous equation

(8.9.1) x′′ + a(t)x′ + b(t)x = 0.

The following theorem and its proof allow to find another solution x2(t) such that
x1(t) and x2(t) are linearly independent and consequently the couple x1(t), x2(t) is
a basis of the vector space of all solutions.

Theorem 8.9.1. Assume that the coefficients a(t) and b(t) in (8.9.1) are con-
tinuous functions on an interval (α, β) and x1(t) is a solution such that x1(t) 6= 0
for any t ∈ (α, β). Then the equation has another solution x2(t) of the form

x2(t) = C(t)x1(t)

which is also defined on (α, β) such that C(t) 6≡ const and consequently x1(t) and
x2(t) are linearly independent and form a basis of all solutions defined on (α, β).

To apply this theorem one should clearly understand its proof.

Proof. Let us find condition on C(t) under which x2(t) = C(t)x1(t) is a
solution. One has

x′2(t) = C ′(t)x1(t) + C(t)x′1(t),

x′′2(t) = C ′′(t)x1(t) + 2C ′(t)x′1(t) + C(t)x′′1(t).

Therefore x2(t) is a solution of (8.9.1) if and only if

C ′′(t)x1(t)+2C ′(t)x′1(t)+C(t)x′′1(t)+a(t) (C ′(t)x1(t) + C(t)x′1(t))+b(t)C(t)x1(t) = 0.

Write this equation in the form

C ′′(t)x1(t) + C ′(t) (2x′1(t) + a(t)x1(t)) + C(t) (x′′1(t) + a(t)x′1(t) + b(t)x1(t)) = 0.

Since x1(t) is a solution, we have x′′1(t) + a(t)x′1(t) + b(t)x1(t) = 0. Therefore the
obtained equation for C(t) simplifies to

C ′′(t)x1(t) + C ′(t) (2x′1(t) + a(t)x1(t)) = 0.
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Introduce D(t) = C ′(t). Since x1(t) 6= 0 for t ∈ (α, β) we obtain the following
equation for D(t):

D′(t) + f(t)D(t) = 0, f(t) =
2x′1(t)
x1(t)

+ a(t).

This equation has a solution (see section 8.4) D(t) = e
− ∫ t

t0
f(s)ds where t0 is any

point in the interval (α, β). Therefore x2(t) is a solution of equation (8.9.1) if we
take

C(t) =
∫ t

t0

D(s)dx, D(t) = e
− ∫ t

t0
f(s)ds

, f(t) =
2x′1(t)
x1(t)

+ a(t)

where t0 is any point in (α, β). Since D(t) > 0 the function C(t) is not a constant.
¤

Example. It is easy to check that the equation

tx′′ − (t + a)x′ + ax = 0
with a real parameter a > 0 has a solution x1(t) = et. Let us find the solution of
the equation satisfying the initial conditions

x(t0) = 1, x′(t0) = 0, t0 > 0.

At first we have to find a linearly independent solution x2(t) defined for t > 0.
We know that there is a solution x2(t) of the form x2(t) = C(t)et. We have
x′2(t) = C ′(t)et + C(t)et, x′′2(t) = C ′′(t)et + 2C ′(t)et + c(t)et. Substituting to the
equation we obtain that the function C(t) must satisfy

C ′′(t)t + C ′(t)(t− a) = 0.

Let D(t) = C ′(t). Since t > 0 the obtained equation holds if and only if

D′(t) =
(a− t)

t
D(t).

Compute ∫
(a− t)dt

t
= a · ln|t| − t.

Since t > 0 one of solutions of the equation for D(t) is

D(t) = ealn t−t = tae−t.

Now for C(t) we have the equation

C ′(t) = tae−t

and one of solutions is C(t) =
∫ t

t0
sae−sds. Therefore

x2(t) = et

∫ t

t0

sae−sds.

Now we know the set of all solutions, it is

et

(
c1 + c2

∫ t

t0

sae−sds

)
.

Substituting the initial conditions we obtain

x(t0) = et0c1 = 1, x′(t0) = c1e
t0 + c2t

a
0 = 0.

It follows that c1 = e−t0 and c2 = −t−a
0 .
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Proof of Theorem 8.8.3. We have the solution x1(t) = tr1 and we know that
there is a linearly independent solution of the form x2(t) = C(t)tr1 . Substituting
x2(t) to equation (8.8.1) we obtain

tr1+2C ′′(t) + C ′(t)tr1+1 (2r1 + b) = 0

or equivalently
tC ′′(t) + C ′(t)(2r1 + b) = 0.

Since r1 is the root of the polynomial P (r) = r(r− 1)+ br + c of multiplicity 2, one
has P ′(r1) = 0 which means 2r1 + b = 1. The obtained equation for C(t) takes the
form

tC ′′(t) + C ′(t) = 0.

Let D(t) = C ′(t). Since t > 0 the obtained equation for C(t) is equivalent to the
equation D′(t) = − 1

t D(t). One of solutions is D(t) = 1
t . Then C ′(t) = 1

t and one
of solutions is C(t) = ln t.

8.10. Exercises

1. Let A be a real 2 × 2 matrix with eigenvector (2, 5 + i) corresponding to the
eigenvalue λ = −3 + 4i. Find the set of all solutions of the system

y′ = Ay +
(√

t2 + 1
t

)

defined for all t and find the solution of this system satisfying the initial condition
y(2) = (3, 0). Integrals in the final answers OK. No complex numbers in the final
answers.

2. Consider the linear system

y′1 = y2 + cos(ω1t), y′2 = −2y1 + sin(ω2t)

with real parameters ω1, ω2. Find a necessary and sufficient condition on (ω1, ω2)
under which any solution of this system defined for all t is a bounded vector-function
(i.e. there exists C such that |y1(t)|, |y2(t)| < C for all t). Give an example of
(ω1, ω2) such that there is an unbounded solution (i.e. such C does not exist) and
find one of such solutions. Is it true that in this case any solution is unbounded?

3. Find the set of all solutions of the system

y′1 = y1 + y2 + 5, y′2 = −5y1 − 3y2 + 1

(without using the method of variation of parameters). No integrals and no complex
numbers in the final answer.

4. Find the solution of the following equations satisfying the condition x(0) = 0.

(a) x′ = −2x + 7, t ∈ R
(b) x′ = −tx + sin t, t ∈ R
(c) tx′ = x + cos t, t > 0

(d) (t2 + 1)x′ = x + cos t, t ∈ R
The final answer should not contain

∫
tdt,

∫
dt
t , other integrals OK.

5. Find the set of all solutions of the equation x′′′(t) = x(t) + sin(t2) defined for
all t. Integrals in the final answer are OK.
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6. Find a particular (i.e. any single) solution of the equation
x′′′(t) = ax(t) + ebtsin(ωt) with real parameters a, b, ω.

7. Find a particular (i.e. any single) solution of the equation
P

(
d
dt

)
(x(t)) = cost where P (λ) = (λ2 + 1)4(λ3 + 5λ2 + 10λ− 4).

8. Find the set of all solutions of the equation
P

(
d
dt

)
(x(t)) = e−2t (sint + cost) + sin(3t) where P (λ) = (λ2 + 4λ + 5)(λ2 + a)2

and a is a real parameter.

9. Find a necessary and sufficient condition on the real numbers a, b, ω under which
any solution of the equation x′′ + ax′ + bx = cos(ωt), defined for all t, is bounded,
i.e. there exists C such that |x(t)| < C for all t.

10. Find the set of all solutions of the system

y′1 = y1 + y2 + y3 + y4, y′2 = y2 + y3 + y4, y′3 = y3 + y4, y′4 = y4

without using the Jordan normal form (solve the last equation, after it the third
equation, then the second, and finally the first equation).

11. Prove that if x1(t) = sint, x2(t) = cost and x3(t) = f(t) are solutions of the
equation of the form (t2 − 1)x′′′ + a(t)x′′ + b(t)x′ + c(t)x = 0 defined for t > 1,
where a(t), b(t), c(t) ∈ C0(1,∞), and the function f(t) satisfies f ′′(5) + f(5) = 0
then f(t) = r1sint + r2cost for some r1, r2 ∈ R.

12. Find the set of all solutions of the equation t2x′′ + 7tx′ + 13x =
√

t, x = x(t)
defined for t > 0. Integrals in the final answer OK.

13. The equation (1− t2)x′′ + 2tx′ − 2x = 0 has a solution x1(t) = t. Find the set
of all solutions of this equations defined for t > 1.



CHAPTER 9

Stability of equilibrium points for autonomous
systems

9.1. Equilibrium (= singular)points

By definition, a singular, or an equilibrium point of an autonomous system

(9.1.1) y′ = F (y), y =




y1(t)
· · ·

yn(t)


 , F (y) =




f1(y)
· · ·

fn(y)




is a point y∗ ∈ Rn such that F (y∗) = 0, i.e. f1(y∗) = · · · = fn(y∗) = 0.

Obviously y∗ is an equilibrium point if and only if y(t) ≡ y∗ is a constant solution
of the system.

For example the system

y′1 = y2, y′2 = y1sin(y2) + y3
1cos(y2)

has the only singular point (0, 0), the system

y′1 = y2, y′2 = y1y2 + sin(y1)
has infinitely many singular points (πk, 0), k ∈ Z, the system

y′1 = y2
1 + y2

2 − 1, y′2 = ay2
1 + y2

2 − 2
with a real parameter a > 2 has 4 singular points

p1 =

(
1√

a− 1
,

√
a− 2
a− 1

)
, p2 =

(
1√

a− 1
, −

√
a− 2
a− 1

)
,

p3 =

(
− 1√

a− 1
,

√
a− 2
a− 1

)
, p4 =

(
− 1√

a− 1
, −

√
a− 2
a− 1

)

If a = 2 this system has two singular points (1, 0) and (−1, 0). If a < 2 this system
has no singular points.

9.2. Definition of stability

Definition 9.2.1. An equilibrium point y∗ ∈ Rn of system (9.1.1) is called
asymptotically stable if for any neighborhood U of y∗ contains a smaller neigh-
bourhod W of y∗ such that for any y0 ∈ W this system has a solution y(t) satisfy-
ing the initial condition y(0) = y0 and defined for all t ≥ 0 and any such solution
satisfies the following conditions: 1. y(t) ∈ U for all t ≥ 0; 2. limt→∞y(t) = y∗.
If only the requirement 1. holds then y∗ is called stable by Lyapunov (so that
asymptotic stability is in general a stronger condition than stability by Lyapunov).
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This definition is illustrated by phase portraits in fig. 9.1-9.3. It is possible that any
solution of a system tends to an equilibrium point as t →∞, but this equilibrium
point is not stable by Lyapunov, see fig. 9.3.

Remark. Usually the words “stable equilibrium point” mean stability by Lyapunov
without excluding the case od asymptotic stability, and the words “not stable equi-
librium point” mean that that it is not stable by Lyapunov (and therefore not
asymptotically stable).

9.3. Stabilty of the origin for the system y′ = Ay

In this case we can give a complete answer. The results of Chapter 5 imply the
following theorem.

Theorem 9.3.1. Let A be an n × n matrix. The stability of the equilibrium
point 0 ∈ Rn of the system y′ = Ay depends as follows on the eigenvalues of the
matrix A:

1. If the real part of any eigenvalue is strictly negative then the equilibrium point
0 ∈ Rn is asymptotically stable.

2. If there exists at least one eigenvalue of A whose real part is strictly positive then
the equilibrium point 0 ∈ Rn is not stable by Lyapunov.

3. In the remaining case that the real part of any eigenvalue of A is ≤ 0 and there
exists at least one eigenvalue whose real part is equal to 0, the equilibrium point
0 ∈ Rn is stable by Lyapunov, but not asymptotically stable.

9.4. Lyapunov theorem

Let y∗ be an equilibrium point of system (9.1.1). Introduce x = y−y∗. The system
takes the form

x′ = F (x + y∗) =




f1(x + y∗)
· · ·

fn(x + y∗)


 = F̃ (x) =




f̃1(x)
· · ·

f̃n(x)


 .

The equilibrium point y = y∗ is now x = 0 ∈ Rn. We assume F ∈ C∞, then the
vector function F̃ (x) can be expressed in the form

F̃ (x) = Ax + o(||x||) as x → 0 ∈ Rn,

where A is the Jacobi matrix

(9.4.1)

A =




∂f̃1
∂x1

(0) ∂f̃1
∂x2

(0) · · · ∂f̃1
∂xn

(0)
· · ·

∂f̃n

∂x1
(0) ∂f̃n

∂x2
(0) · · · ∂f̃n

∂xn
(0)


 =




∂f1
∂y1

(y∗) ∂f1
∂y2

(y∗) · · · ∂f1
∂yn

(y∗)
· · ·

∂fn

∂y1
(y∗) ∂fn

∂y2
(y∗) · · · ∂fn

∂yn
(y∗)




We have now a system of the form

(9.4.2) x′ = Ax + o(||x||) as x → 0 ∈ Rn.

Obviously the equilibrium point y∗ of system (9.1.1) is stable (by Lyaponov or
asymptotically) if and only if the equilibrium point 0 ∈ Rn of system (9.4.2) has
the same property. Is it the same property as the stability of the system x′ = Ax
obtained by taking away o(||x||)?
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Remark. The system x′ = Ax is called the linearization of (9.1.1) at y∗.

The answer to this question was obtained by Lyapunov. In cases 1 and 2 of Theorem
9.3.1 the terms o(||x||) in (9.4.2) play no role in the stability question. But they
are important in case 3 of Theorem 9.3.1.

Theorem 9.4.1 (Lyapunov). Let F (y) ∈ C∞ (this condition can be weakened).
Let y∗ be an equilibrium point of system (9.1.1). Let A be the matrix (9.4.1).

1. If the real part of any eigenvalue of A is strictly negative then y∗ is an asymp-
totically stable equilibrium point.

2. If there exists at least one eigenvalue of A whose real part is strictly positive then
y∗ is not stable by Lyapunov (and therefore not asymptotically stable).

3. In the remaining case that the real part of any eigenvalue of A is ≤ 0 and there
exists at least one eigenvalue whose real part is equal to 0, the information on the
matrix A is not enough to answer the question on stability: dependently on the non-
linear terms o(||x||) in (9.4.2) in point y∗ can be asymptotically stable, or stable by
Lyapunov and not asymptotically stable, or not stable by Lyapunov.

9.5. A lemma on eigenvalues of 2× 2 matrices

Before illustrating Lyapunov theorem by examples, let us give a simple necessary
and sufficient condition under which the eigenvalues of a 2 × 2 matrix satisfy the
condition 1. or condition 2. in Theorem 9.4.1.

Since the trace of a matrix is the sum of the eigenvalues and the determinant is
their product (with multiplicities) we have the following table relating all possible
cases for the eigenvalues with the signs of the trace and the sign of the determinant:

Case for the eigenvalues
λ1, λ2 of a

2× 2 matrix A
(including λ1 = λ2)

traceA detA

λ1, λ2 ∈ R,
λ1, λ2 < 0 negative positive

λ1, λ2 ∈ R,
λ1, λ2 > 0 positive positive

λ1, λ2 ∈ R,
λ1 > 0, λ2 < 0 ? negative

λ1, λ2 ∈ R,
λ1 = 0, λ2 < 0 negative zero

λ1, λ2 ∈ R,
λ1 = 0, λ2 > 0 positive zero

λ1, λ2 ∈ R,
λ1 = 0, λ2 = 0 zero zero

λ1,2 = α± βi,
β 6= 0, α < 0 negative positive

λ1,2 = α± βi,
β 6= 0, α > 0 positive positive

λ1,2 = ±βi, β 6= 0 zero positive

This table implies the following useful lemma.
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Lemma 9.5.1. The eigenvalues of a 2× 2 matrix A satisfy the condition 1. in
Theorem 9.4.1 if and only if traceA < 0 and detA > 0. The eigenvalues satisfy the
condition 2. in Theorem 9.4.1 if and only if either traceA > 0 or detA < 0.

9.6. Example with n = 2

Consider the system

x′1 = x2
1 + x2

2 − 1, x′2 = ax1 + bx2, b 6= 0.

There are two singular points:

p1 =
( |b|√

a2 + b2
, − a|b|

b
√

a2 + b2

)

p2 =
(
− |b|√

a2 + b2
,

a|b|
b
√

a2 + b2

)

The Jacobi matrix is A =
(

2x1 2x2

a b

)
. We have

A(p1) =

(
2|b|√
a2+b2

− 2a|b|
b
√

a2+b2

a b

)
.

A(p2) =

(
− 2|b|√

a2+b2
2a|b|

b
√

a2+b2

a b

)
.

Compute

detA(p1) =
2|b|(a2 + b2)
b
√

a2 + b2
, traceA(p1) =

2|b|√
a2 + b2

+ b

detA(p2) = −2|b|(a2 + b2)
b
√

a2 + b2
, traceA(p2) = − 2|b|√

a2 + b2
+ b

Note that

• if b > 0 then traceA(p1) > 0, therefore p1 is not stable;

• if b < 0 then detA(p1) < 0, therefore like above p1 is not stable;

• it follows that p1 is not stable for any parameters a, b 6= 0;

• if b > 0 then detA(p2) < 0, therefore p2 is not stable;

• if b < 0 then detA(p2) > 0 and traceA(p2) < 0, therefore p2 is asymptotically
stable;

• thus p2 is stable (asymptotically) if b < 0 and not stable (by Lyapunov) if b > 0.

9.7. Example with n = 3

Consider the system

x′1 = x2
2 + x3, x′2 = x2

3 + x1, x′3 = x2
1 + x2.

It is easy to see that there are two equilibrium points

p1 = (0, 0, 0), p2 = (−1,−1,−1).
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The Jacobi matrix is A =




0 2x2 1
1 0 2x3

2x1 1 0


 . We have

A(p1) =




0 0 1
1 0 0
0 1 0


 , A(p2) =




0 −2 1
1 0 0
−2 1 0


 .

The characteristic polynomial of the matrix A(p1) is λ3−1. One of the eigenvalues
is equal to 1. Therefore p1 is not stable. The characteristic polynomial of the matrix
A(p2) is λ3 +6λ+7. Let λ1, λ2, λ3 be its roots, i.e. eigenvalues of the matrix A(p2).
By Vieta’s theorem λ1 + λ2 + λ3 = 0. Therefore Reλ1 + Reλ2 + Reλ3 = 0. Sice 0
is not an eigenvalues, the case Reλ1 = Reλ2 = Reλ3 = 0 is impossible. It follows
that there is at least one eigenvalues whose real part is positive. Therefore like p1

the equilibrium point p2 is not stable.

9.8. Exercises

1. Find all singular points of the system

x′1 =
x1

x2
− 1, x′2 = f(x1)

f(x1) = (x1 + 3)(x1 + 2)(x1 + 1)(x1 − 1)(x1 − 2)(x1 − 3)
and determine which of them are asymptotically stable.

2. Find all singular points of the system

x′1 = ln(x1x2), x′2 = ax1 − b,

where a, b are real parameters, a 6= 0, b 6= 0. Determine which of them are asymp-
totically stable.

3. Find all singular points of the system
x′1 = (x2 − x1) · x2

3

x′2 = x1x3 − x2

x′3 = (x3 + 7
2 )(x3 + 5

2 )(x3 + 3
2 )(x3 + 1

2 )(x3 − 1
2 )(x3 − 3

2 )(x3 − 5
2 )(x3 − 7

2 )
and determine which of them are asymptotically stable.

4. Consider the system

x′1 = −xN
1 , x′2 = x3, x′3 = ax2, a ∈ R, N ∈ {1, 2, 3, ...}.

Prove that the equilibrium point (0, 0, 0) is stable by Lyapunov if and only if a < 0
and N is an odd number.





CHAPTER 10

Solvable first order ODEs

10.1. Introduction

We have a complete theory of autonomous first order ODEs x′ = f(x) (Chapter 3)
and a complete theory of linear first order ODEs x′ = a(t)x + b(t) (section 8.4).

In this chapter we present several other types of first order ODEs x′ = f(t, x) which
can be solved. Here the world “to solve” should be understood as follows: we can
find a formula (possibly involving integrals that cannot be expressed by elementary
functions) relating t and x for all solutions x(t) of the equation.

More precisely, “to solve” means to find a function H(t, x) such that

(10.1.1) H(t, x(t)) = c = const for any solution x(t).

The constant c depends on the initial conditions. In some cases such a formula
implies a direct formula for x(t), in many cases not. Many first order ODEs are
not solvable, i.e. a function H(t, x) cannot be found, even if integrals are allowed.

One should understand that even if an equation is solvable, i.e. we know a function
H(t, x) satisfying (10.1.1), it does not mean at all that we know the basic qualitative
properties of solutions: on which intervals they are defined, for which t they increase
or decrease, what are their limits as t → ±∞, etc. Certainly if the function H is
simple enough, it can help a lot to obtain the answers. But in many cases the
function H(t, x), for solvable equations, is as involved as

H(t, x) =

√
t + lnx

x2 − t
+ sin

(
xt

x2 − t2

)

or

H(t, x) =
∫ x/t

0

e−sin
√

s4−√sds + cos

(
1

x2 + t2 − 1

)
.

In such cases it cannot help much to answer qualitative questions on solutions.

On the other hand, in many cases the qualitative properties of solutions can be
understood without solving it, whether or not solving is possible. We already
illustrated it in chapters 3 and 4.

10.2. Separable equations: x′ = a(t)b(x)

Equations of the form

(10.2.1) x′ = a(t)b(x), x = x(t), a(t) ∈ C0, b(x) ∈ C1

so that the function f(t, x) in the first order ODE of general form, x′ = f(t, x),
is the product of two functions, one depends only on t, the other only on x, are
called separable. We need the assumptions a(t) ∈ C0, b(x) ∈ C1 in order to use the
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existence and the uniqueness theorem, as well as the theorem on prolongation of
solutions, see Chapter 2.

Equations of form (10.2.1) are present in any level text book on ODEs and usually
they are solved as in the following example:

Example. The standard way of solving the equation x′ = x2 · cos t is as follows.
Write the equation in the form dx

dt = x2 · cos t, after that in the form dx
x2 = cos tdt.

The next step is to add the sign of integral to the both sides of the equation:∫
dx
x2 =

∫
cos tdt. Integrating we get − 1

x = sin t + c where c is a “free” constant.
It follows x(t) = − 1

c+sin t . The constant c depends on the initial condition. If
for example we have x(0) = 1 then substituting t = 0 we obtain c = −1 and
consequently x(t) = 1

1−sin t .

Certainly the manipulations used in this example are not more than notations, a
kind of “slang” which corresponds to a certain theorem. These notations (or slang
if one wishes) are very convenient and very standard and it is worth to use them,
but a student (especially of Math faculty) should clearly understand what theorem
is covered by these notations.

This theorem is as follows.

Theorem 10.2.1.
1. Let x(t) be a non-constant solution of equation (10.2.1) satisfying the condition
x(t0) = x0 and defined for t ∈ (α, β). Then b(x(t)) 6= 0 for any t ∈ (α, β),
consequently t → ∫ x(t)

x0

ds
b(s) is a differentiable function, and one has

(10.2.2)
∫ x(t)

x0

ds

b(s)
=

∫ t

t0

a(s)ds, t ∈ (α, β).

2. The converse also holds: if x(t) is a differentiable function such that b(x(t)) 6= 0
for all t ∈ (α, β) and such that (10.2.2) holds then x(t) is a solution of (10.2.1) for
t ∈ (α, β).

Proof. Let x(t), t ∈ (α, β) be a non-constant solution. The fact that b(x(t)) 6=
0 for all t ∈ (α, β) follows from the uniqueness theorem and the condition that x(t)
is a non-constant solution: if b(x(t1)) = 0 for some t1 ∈ (α, β) then the function
x̃(t) ≡ x(t1) is a solution of (10.2.1) and since x̃(t1) = x(t1) we have contradiction
to the uniqueness theorem. To show that (10.2.2) holds it suffices to note that the
functions

F (t) =
∫ x(t)

x0

ds

b(s)
, G(t) =

∫ t

t0

a(s)ds

have the same value at t0: F (t0) = G(t0) = 0 and their derivatives are identically
equal:

F ′(t) =
1

b(x(t))
· x′(t) =

1
b(x(t))

· (b(x(t))a(t)) = a(t) = G′(t) = a(t).

Here we certainly used that x(t) is a solution of (10.2.1). To prove the second
statement it suffices to observe that if F (t) = G(t) then F ′(t) = G′(t) and it
follows

1
b(x(t))

· x′(t) = a(t) =⇒ x′(t) = a(t)b(x(t)).

¤
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Example 10.2.2. Consider the equation

x′ = (x− 1)(x− 3)
t3

t4 + 1
.

Let us analyze the solution of this equation satisfying the initial condition

x(1) = 2

and defined on maximal possible time-interval (t−, t+).

We have constant solutions x1(t) ≡ 1 and x2(t) ≡ 3. The initial condition x(1) = 2
and the uniqueness theorem imply

(10.2.3) x(t) ∈ (1, 3), t ∈ (t−, t+).

It follows:

(10.2.4) x′(t) > 0 if t ∈ (t−, t+), t < 0 x′(t) < 0 if t ∈ (t−, t+), t > 0

Therefore if 0 ∈ (t−, t+) then 0 is a point of maximum of x(t).

From (10.2.3) and (10.2.4) it follows that there are limits

(10.2.5) lim
t→t+

x(t) = A ∈ [1, 3], lim
t→t−

x(t) = B ∈ [1, 3].

Now Theorems on prolongation of solutions in section 2.4 imply

t− = −∞, t+ = ∞.

To find A in B in (10.2.5) we use Theorem 10.2.1. According to this theorem
∫ x(t)

2

ds

(s− 1)(s− 3)
=

∫ t

1

s3ds

s4 + 1
.

The integrals ∫ ∞

1

s3ds

s4 + 1
,

∫ −∞

1

s3ds

s4 + 1

diverge. Therefore the integrals
∫ A

2
ds

(s−1)(s−3) and
∫ B

2
ds

(s−1)(s−3) diverge. It allows
to conclude that each of the numbers A and B is either 1 or 3. Since x(t) decreases
as t > 0 and increases as t > 0 we obtain

A = B = 1.

Our analysis shows that the graph of x(t) is one showed in fig. 10.1.

Example 10.2.3. Consider the equation

x′ = (x− 1)(x− 3)
t3

(t4 + 1)2
.

Let us analyze the solution of this equation satisfying the initial condition

x(1) = 2

and defined on maximal possible time-interval (t−, t+).

Arguing in exactly the same way as in Example 10.2.2 we obtain

t− = −∞, t+ = ∞
x(t) increases as t < 0, x(t) decreases as t > 0

limt→∞x(t) = A ∈ [1, 3], limt→−∞x(t) = B ∈ [1, 3],
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∫ x(t)

2

ds

(s− 1)(s− 3)
=

∫ t

1

s3ds

(s4 + 1)2
.

The latter equation implies
∫ A

2

dx

(x− 1)(x− 3)
=

∫ ∞

1

t3dt

(t4 + 1)2
,

∫ B

2

dx

(x− 1)(x− 3)
=

∫ −∞

1

t3dt

(t4 + 1)2
.

The integrals in the right hand side parts of these equations converge. It allows us
to conclude that

A > 1, B > 1

(explicit computation of A and B is possible, but requires a lot of work). The graph
of the solution is showed in fig. 10.2.

Example 10.2.4. Consider the equation

x′ = (x− 1)3(x− 3)2sin t.

Let us analyze the solution of this equation satisfying the initial condition

x(1) = 2

and defined on maximal possible time-interval (t−, t+).

Arguing as in the previous examples we obtain that t+ = ∞, t− = −∞ and x(t)
increases as sin t > 0 and decreases as sin t < 0. We also have

∫ x(t)

2

ds

(s− 1)3(s− 3)2
=

∫ t

1

sinsds

and it follows that the function x(t) has no limit as t → ±∞. The graph of x(t) is
showed in fig. 10.3.

Example 10.2.5. Consider the equation

x′ = (x4 − 1) · t
Let us analyze the solution of this equation satisfying the initial condition

x(0) = 2

and defined on maximal possible time-interval (t−, t+).

The uniqueness theorem implies that x(t) > 1 for any t ∈ (t−, t+). We also see
that x(t) increases if t ∈ (t−, t+), t > 0 and decreases if t ∈ (t−, t+), t > 0. In this
case the theorem on prolongation of solutions does not alow us to decide if t+ and
t− are ±∞ or finite numbers. But we can answer this question using the equation

(10.2.6)
∫ x(t)

2

ds

s4 − 1
=

∫ t

0

sds =
t2

2
.

Assume that t+ = ∞. In this case it is easy to prove (without solving the equation)
that x(t) → ∞ as t → ∞ and (10.2.6) implies

∫∞
2

ds
s4−1 = ∞ which is a contra-

diction: the integral
∫∞
2

ds
s4−1 converges. Therefore t+ < ∞. In the same way we
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prove that t− = −∞. The prolongation theorem implies x(t) → ∞ as t → ±∞.
Using again (10.2.6) we obtain

t± = ±
√

2
∫ ∞

2

dx

x4 − 1
.

The graph of x(t) is showed in fig. 10.4.

Example 10.2.6. ni Consider the equation

x′ = (x4 − 1) · t2.
Let us analyze the solution of this equation satisfying the initial condition

x(0) = 2

and defined on maximal possible time-interval (t−, t+).

Like in the previous example we have x(t) > 1 for any t ∈ (t−, t+), but now the
function x(t) increases for all t ∈ (t−, t+). We can use the theorem on prolongation
of solutions to conclude that t− = −∞. We cannot use theorem on prolongation of
solutions to see if t+ = ∞ or t+ is a finite number, but we can answer this question
arguing in the same way as in Example 10.2.5. We have

(10.2.7)
∫ x(t)

2

ds

s4 − 1
=

∫ t

0

s2ds =
t3

3
.

If t+ = ∞ then it is easy to see (without solving the equation) that x(t) → ∞
as t → t+ and (10.2.7) gives

∫ x(t)

2
ds

s4−1 = ∞ whereas we know that this integral
converges. The contradiction shows that t+ is a finite number. Now we use the
prolongation theorem to conclude that x(t) → ∞ as t → t+. Using again (10.2.7)
we obtain

t+ =
(

3
∫ ∞

2

dx

x4 − 1

)1/3

.

Since x(t) is an increasing function and x(t) > 1 there exists limt→−∞x(t) = B ≥ 1.
Taking the limit as t → −∞ in (10.2.7) we obtain

∫ B

2
ds

s4−1 = −∞ and it follows
B = 1. The graph of the solution is showed in fig. 10.5.

Example 10.2.7. Consider the equation

x′ = (x2 − 1)(t− 1).

Let us analyze the solution of this equation satisfying the initial condition

x(0) = a < −1.

and defined on maximal possible time-interval (t−, t+).

The uniqueness theorem implies x(t) < −1 for all t ∈ (t−, t+). It follows that x(t)
increases as t ∈ (t−, t+), t > 1 and decreases as t ∈ (t−, t+), t < 1. The theorem
on prolongation of solutions implies t− = −∞. It follows that there is a limit
limt→−∞x(t) = B ≥ −1. Taking the limit as t → −∞ in the equation

(10.2.8)
∫ x(t)

a

ds

s2 − 1
=

∫ t

0

(s− 1)dx =
t2

2
− t

we obtain
∫ B

2
dx

x2−1 = ∞ and it follows B = −1.
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This part of the analysis is simple, but the part concerning t+ is not. Assume
t+ > 1. In this case x(t) increases as t > 1 and since x(t) < −1 we can use the
prolongation theorem to conclude that t+ = ∞. Equation (10.2.8) implies that
limt→∞x(t) = −1. Therefore inder assumption t+ > 1 we obtain that t+ = ∞ and
the graph of the solution is showed in fig. 10.6,a.

If it is not true that t+ > 1, i.e. t+ ≤ 1 then x(t) is a decreasing function for all
t ∈ (−∞, t+) and the prolongation theorem implies that limt→t+x(t) = −∞. The
graph of x(t) is showed in fig. 10.6.b.

Thus we have tow principally different possibilities: a. and b. in fig. 10.6 and we
know that one of them holds. Which one?

To answer we have to make computation of the integral in (10.2.8). One can
compute

a < −1, x < −1 =⇒
∫ x

a

ds

s2 − 1
=

1
2
ln

(
x− 1
x + 1

)
− 1

2
ln

(
a− 1
a + 1

)

After this computation we obtain from (10.2.8):
x− 1
x + 1

=
a− 1
a + 1

et2−2t.

It is easy to solve this equation with respect to x. Doing it we see that x(t) is
defined for all t such that

et2−2t 6= a + 1
a− 1

.

Now we have to find t, id any, such that et2−2t = a+1
a−1 or equivalently

(10.2.9) t2 − 2t− ln

(
a + 1
a− 1

)
= 0.

The roots of this square equation are

(10.2.10) t1 = 1 +

√
1 + ln

(
a + 1
a− 1

)
, t2 = 1−

√
1 + ln

(
a + 1
a− 1

)

It is easy to compute

a < −1, 1 + ln

(
a + 1
a− 1

)
= 0 ⇔ a =

1 + e

1− e
.

Therefore if a < 1+e
1−e the equation (10.2.9) has no real roots and consequently x(t) is

defined for all t ∈ R, i.e. t+ = ∞ and we have case a. in fig. 10.6. If a ∈
(
−1, 1+e

1−e

)

the equation (10.2.9) has two real roots defined by (10.2.10), and if a = 1+e
1−e it has

one real root. In any of these cases the roots are positive and the smaller root is t1.
Therefore in the case a ∈

(
−1, 1+e

1−e

]
the solution is defined for t ∈ (−∞, t+) with

t+ = t1 = 1−
√

1 + ln
(

a+1
a−1

)
.

The final conclusion is as follows:

Denote
µ =

1 + e

1− e
≈ −2.16.

If a ∈ (−1, µ) we have case a. in fig. 10.6, and if a ≤ µ we have case b. in fig. 10.6.
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10.3. Equations of the form x′ = f
(

x
t

)
, t > 0

Such equations can be solve by introducing the function y(t) = x(t)
t . We have

y′ =
(x

t

)′
=

x′t− x

t2
=

1
t

(
f

(x

t

)
− x

t

)
=

1
t
(f(y)− y).

Thus y(t) satisfies the equation

y′ =
f(y)− y

t

which is a separable equation. We know how to solve it. We obtain a formula
relating y and t. Substituting y = x/t we obtain a formula relating x and t.

Example 10.3.1. Let x(t) be the solution of the equation x′ = x2

t2 + 1, t > 0
satisfying the initial condition x(3) = 2. Then the function y = y(t) = x(t)

t satisfies
the equation y′ = y2+1−y

t and the initial condition y(3) = x(3)
3 = 2

3 . We obtain
∫ y(t)

2/3

ds

s2 + 1− s
=

∫ t

3

ds

s
= ln

(
t

3

)

and it follows

t = 3 · exp

(∫ y(t)

2/3

ds

s2 + 1− s

)
.

Therefore x(t) and t are related by the formula

t = 3 · exp

(∫ x(t)
t

2/3

ds

s2 + 1− s

)
.

Example 10.3.2. Let x(t) be the solution of the equation

x′ =
x3 + 2x2t + t3

xt2 + 3t3
, t > 0

satisfying the initial condition x(1) = 0. This equation has the form x′ = f(x
t )

because dividing the nominator and the denominator by t3 we obtain

x′ = f(y) =
y3 + 2y2 + 1

y + 3
, y =

x

t
.

The function y(t) satisfies the equation

y′ =
1
t

(
y3 + 2y2 + 1

y + 3
− y

)
=

y3 + y2 − 3y + 1
t · (y + 3)

and the initial condition y(1) = x(1)
1 = 0. Solving it we obtain

∫ y(t)

0

(s + 3)ds

s3 + s2 − 3s + 1
=

∫ t

1

ds

s
= lnt

which gives us the forllowing formula relating x(t) and t:

t = exp

(∫ x(t)
t

0

(s + 3)ds

s3 + s2 − 3s + 1

)
.
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10.4. Equations of the form x′ = f(ax + bt + c), a 6= 0

Such equations can be solved by introducing y(t) = ax(t) + bt + c. The function
y(t) satisfies the equation

y′(t) = ax′(t) + b = af(y) + b

which can be solved as a separable equation. Substituting y = ax + bt + c to the
formula relating y(t) and t we obtain a formula relating x(t) and t.

Example 10.4.1. Let x(t) be the solution of the equation x′ = (2x+5t+1)3+1
satisfying the initial condition x(3) = 1. The function y(t) = 2x(t)+5t+1 satisfies
the equation

y′ = 2x′ + 5 = 2(y3 + 1) + 5 = 2y3 + 7
and the initial condition y(3) = 2x(3) + 5 · 3 + 1 = 18. Therefore

∫ y(t)

18

ds

2s3 + 7
=

∫ t

3

ds = t− 3

and we obtain the following formula relating x(t) and t:

t = 3 +
∫ 2x(t)+5t+1

18

ds

2s3 + 7
.

10.5. Bernoulli equation x′ = a(t)x + b(t)xβ , β ∈ R
If β = 1 it is a linear first order ODE. If β 6= 1 it can be simplified to a linear ODE
by introducing

y(t) = xr(t) with a suitable r.

We have

y′(t) = rxr−1x′(t) = rxr−1(t)
(
a(t)x(t) + b(t)xβ(t)

)
= r

(
a(t)y(t) + b(t)xβ+r−1(t)

)
.

We see that taking
r = 1− β

we obtain a linear equation

y′(t) = (1− β) (a(t)y(t) + b(t)) .

We know how to solve this equation (section 8.4). We can obtain a formula for
y(t). We know that x(t) = (y(t))

1
1−β , therefore we can obtain a formula for x(t).

Example 10.5.1. Let us find the solution of the equation

x′ = −tx + x1/3

satisfying the initial condition x(0) = 2.
Introduce

y(t) = x2/3(t).
Then

y′ =
2
3
x−1/3x′ =

2
3
x−1/3(−tx + x1/3) = −2

3
tx2/3 + 2/3 = −2

3
ty +

2
3
.

Thus we obtain

(10.5.1) y′ = −2
3
ty +

2
3
, y(0) = (x(0))2/3 = 22/3.
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The set of all solution of the homogeneous linear equation y′ = − 2
3 ty is

y′ = −2
3
ty =⇒ y = ce−t2/3, c ∈ R.

A particular solution y∗(t) of (10.5.1) can be found by the method of variation of
constants. It has the form y∗(t) = C(t)e−t2/3 where the function C(t) satisfies the
equation

C ′(t) =
2
3
et2/3.

We can take

C(t) =
2
3

∫ t

0

es2/3ds.

We obtain the set of all solutions of equation (10.5.1):

y(t) =
(

c +
2
3

∫ t

0

es2/3ds

)
e−t2/3.

The initial condition y(0) = 22/3 implies c = 22/3. Therefore

y(t) =
(

22/3 +
2
3

∫ t

0

es2/3ds

)
e−t2/3

and

x(t) = y3/2(t) =
((

22/3 +
2
3

∫ t

0

es2/3ds

)
e−t2/3

)3/2

=

=
(

22/3 +
2
3

∫ t

0

es2/3ds

)3/2

· e−t2/2.

10.6. Exercises

1. Find a formula, without integrals, for the solution x(t) of the equation x′ =
x(1− x)t satisfying the initial condition x(1) = 1/2.

2. Draw the graph of the solution x(t) of the given first order ODE satisfying the
given initial condition and defined on maximal possible interval (t−, t+).
Determine in t− and t+ are finite or ±∞.
If t− and/or t+ is finite give a formula for it (integrals are OK).
Find limt→t+x(t) and limt→t−x(t) (integrals are OK if the limit is not ±∞)

2.1. x′ = (x4 − 1)(t3 − t), x(0) = 0

2.2. x′ = sinx · cos t, x(π) = 10

2.3 x′ =
√

x8 + 1 · t
t2+1 , x(0) = 0

2.4 x′ =
√

x8 + 1 · 1
t2+1 , x(0) = 0

2.5 x′ = (t− 1) · (x−1)2

x2+1 , x(1) = 2

2.6 x′ = (t− 1)2 · (x−1)2

x2+1 . x(1) = 2

2.7. x′ = (1− x2)(t + 3), x(0) = a > 1

2.8. x′ = (1− x2)(t + 3), x(0) = a < −1
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3. Find the solution of the equation x′ = x+t
t satisfying the initial condition

x(2) = 1 and defined for all t > 0. No integrals in the final answer.

4. Let x(t) be a solution of the equation

x′ =
tx(x2 + t2)
x4 + 2t4

satisfying the initial condition x(2) = 1 and defined on some interval t ∈ (α, β)
which does not contain the point t = 0. Give a formula relating x(t) and t. Integrals
are OK.

5. Let x(t) be a solution of the equation

x′ = sin (2x + 3t− 1) + 2

satisfying the initial condition x(0) = 0 and defined on some interval t ∈ (α, β).
Give a formula relating x(t) and t. Integrals are OK.

6. Let x(t) be a solution of the equation

x′ =
√

x +
t

x

(Bernoulli equation) satisfying the initial condition x(1) = 1 and defined on some
interval t ∈ (α, β). Give an explicit formula for x(t) : x(t) = ...... Integrals are OK.


