ODEs - 104285. Semester: Spring. Year: 2012

HW-1. Deadline: Monday, April 2, 6 pm

1. . Let $f(x)=(x-1)^{2}(x-2)^{3}(x+1)^{4}(x+2)^{5}$ and let $x_{1}(t), \ldots, x_{7}(t)$ be the solutions of the equation $x^{\prime}(t)=f(x(t))$ satisfying the initial condition
$x_{1}(0)=-1.5, \quad x_{2}(1)=-1, \quad x_{3}(2)=-0.5$,
$x_{4}(3)=0.5, x_{5}(4)=1, \quad x_{6}(5)=1.5, \quad x_{7}(6)=1.5$
and defined on maximal possible interval $\left(t^{-}, t^{+}\right)$. Find, for each of these solutions, t^{-}and t^{+}and draw the 7 graphs, of $x_{1}(t), \ldots, x_{7}(t)$, in the same (t, x) plane. Do not use calculator.
2. Let $x_{1}(t), \ldots, x_{7}(t)$ be the solutions of the equation $x^{\prime}(t)=\sin \left(e^{x(t)}\right)$ satisfying the initial condition
$x_{1}(0)=2, \quad x_{2}(1)=2, \quad x_{3}(0)=3, \quad x_{4}(1)=3$, $x_{5}(-1)=4, \quad x_{6}(-1)=5, \quad x_{7}(-1)=6$
and defined on maximal possible interval $\left(t^{-}, t^{+}\right)$. Find, for each of these solutions, t^{-}and t^{+}and draw the 7 graphs, of $x_{1}(t), \ldots, x_{7}(t)$ in the same (t, x) plane. For each of the functions $x_{1}(t), \ldots, x_{7}(t)$ find its value at the inflection point (nikudat pitul). Probably you will need a calculator.
3. Let $x(t)$ be solution of the equation $x^{\prime}(t)=f(x(t))$, where $f(x)$ is a function given below, satisfying the initial condition $x(3)=5$ and defined on maximal possible interval $\left(t^{-}, t^{+}\right)$. Find t^{-}, t^{+}, draw the graph of $x(t)$ and answer the following question: for which $a \in \mathbb{R}$ there exists $t_{1} \in\left(t^{-}, t^{+}\right)$such that $x\left(t_{1}\right)=a$? For all such a give a formula for t_{1} (integral in the formula is OK).
a) $f(x)=\left(x^{2}-1\right) \sin x$
b) $f(x)=\sin x+\cos x$
4. Let $x(t)$ be the solution of the equation $x^{\prime}(t)=f(x(t))$, where $f(x)$ is the functions given below, satisfying the initial condition $x(3)=5$ and defined on the maximal possible interval $\left(t^{-}, t^{+}\right)$. Find t^{-}, t^{+}, find $x(3.5)$, and draw the graph of $x(t)$.
a) $f(x)=x^{2}+30$ (no integrals in the answers)
b) $f(x)=x^{2}-30$ (no integrals in the answers)
c) $f(x)=\frac{x^{7}-100}{x^{6}+1}$
(integrals are OK only if they are convergent (metkansim))
d) $f(x)=\frac{x^{7}-10^{6}}{x^{4}+1}$
(integrals are OK only if they are convergent (metkansim))
