HOMEWORK 1

In all problems below, a function should be treated as a Taylor series at $0 \in \mathbb{R}^{n}$. You should understand the first lecture: the method of normalization by the principal part and the proof of Morse theorem using this method.

The notation h.o.t. means higher order terms and is used as follows. If $P(x)$ is a polynomial of n variables x_{1}, \ldots, x_{n} of degree d then $P(x)+$ h.o.t. means a function of the form $P(x)$ plus terms of order $>d$, i.e. a function of the form $P(x)+\sum_{|(\alpha)|>d} c_{\alpha} x^{\alpha}$. Here $(\alpha)=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$, $|(\alpha)|=\alpha_{1}+\cdots+\alpha_{n}, x^{\alpha}=x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}$, and c_{α} are any numbers.

Problem 1. Prove that any function of two variables of the form $x^{3}+y^{3}+h$. .o.t. can be reduced by a change of coordinates to $x^{3}+y^{3}$.

Problem 2. Find a normal form, as simple as possible, to which any function of two variables of the form $x^{m}+y^{m}+h . o . t$. can be reduced by a change of coordinates. Consider at first the cases $m=3, m=4, m=5$, after this any integer m.

Problem 3. Find a normal form, as simple as possible, to which any function of two variables of the form (a) $x^{2} y+$ h.o.t. (b) $x^{3}+$ h.o.t. can be reduced by a change of coordinates.

Problem 4. Prove that any function of $k+s$ variables $x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{s}$ of the form $x_{1}^{2} \pm x_{2}^{2} \pm \cdots \pm x_{k}^{2}+h . o . t$. can be reduced by a change of coordinates to the form $x_{1}^{2} \pm x_{2}^{2} \pm \cdots \pm x_{k}^{2}+f\left(y_{1}, \ldots, y_{s}\right)$, with some function f.

Problem 5. Find a normal form, as simple as possible, to which any function of three variables of the form (a) $x^{3}+y^{3}+z^{3}+$ h.o.t. can be reduced by a change of coordinates.

Problem 6. Prove that a function of one variable of the form $x^{k}+$ h.o.t. can be reduced by a change of coordinates to x^{k}.

Problem 7. Think about a general theorem on the normalization by the principal part, i.e. about the simplest normal form to which any function of n variables $x=\left(x_{1}, \ldots, x_{n}\right)$ of the form $P^{(m)}(x)+$ h.o.t. can be reduced by a change of coordinates. Here $P^{(m)}(x)$ is a homogeneous degree $m \geq 2$ polynomial. The theorem should be formulated in terms of the linear operators $L_{i}:\left(H^{(i+1)}\right)^{n} \rightarrow H^{(i+m)}$, where H^{i} is the space of homogeneous degree i polynomials, and

$$
L_{i}\left(\phi_{1}, \ldots, \phi_{n}\right)=\sum_{j=1}^{n} \frac{\partial P^{(m)}(x)}{\partial x_{j}} \cdot \phi_{i}(x), \quad \phi_{1}(x), \ldots, \phi_{n}(x) \in H^{(i+1)} .
$$

