ODEs - 104285. Semester: Spring. Year: 2011

HW-1. Deadline: Monday, March 14, 6 pm

1. Use the uniqueness theorem to prove that any solution of the equation x'(t) = x(t) defined for all $t \in \mathbb{R}$ has the form $x(t) = Ce^t$.

2. In the lecture we checked that the equation $x'(t) = \sqrt{|x(t)|}$ has two solutions satisfying the initial condition x(0) = 0: the solution $x(t) \equiv 0$ and the solution $\widetilde{x}(t) = \frac{t^2}{4}$ as $t \ge 0$, $\widetilde{x}(t) = 0$ as $t \le 0$. How many there are other solutions of the same equation satisfying the same initial

condition? To answer, consider the functions

 $\begin{aligned} \widehat{x}(t) &= \frac{t^2}{4} \text{ as } t \geq 0, \quad \widehat{x}(t) = -\frac{t^2}{4} \text{ as } t \leq 0; \\ \widetilde{x}_r(t) &= \frac{(t-r)^2}{4} \text{ as } t \geq r, \quad \widetilde{x}_r(t) = 0 \text{ as } t \leq r, \\ \text{where } r \in \mathbb{R} \text{ is a parameter. Which of the functions } \widehat{x}(t), \widetilde{x}_r(t) \text{ satisfy the same} \end{aligned}$ equation and the same initial condition? Draw the graphs of these functions and explain why there is no contradiction to the uniqueness theorem.

3.(*) (Related to problem 2). Let y(t) be one of solutions of the equation $y'(t) = \sqrt{|y(t)|}$ satisfying the initial condition y(1) = 1/4 and defined for all $t \in \mathbb{R}$. Is it true that $y(t) = t^2/4$ for all $t \ge 0$? If yes - prove it, if no - give a counterexample.

4. Let f(t, x) be a function of two variables satisfying the requirements in the existence and uniqueness theorem in the open set $U = \{(t, x) : t < 1.01\}$. Let x(t) and $\tilde{x}(t)$ be solutions of the same equation x'(t) = f(t, x(t)) defined on the interval $t \in (-\infty, 1)$. Assume that $\lim_{t \to 1} x(t) = \lim_{t \to 1} \tilde{x}(t) = B$, where B is a finite number (nor $\pm \infty$). Prove that x(t) and $\tilde{x}(t)$ is the same function.

5. Given a real r > 0 find an autonomous ordinary differential equation which has solutions $x(t) = \frac{1}{C - rt}$ with any $C \in \mathbb{R}$.

6. (Related to problem 5). Assume that the population of cats near your house changes in time according to the equation $x'(t) = 0.01x^2(t)$ where x(t) is the number of cats at time t measured in years. Assume that today there are 10 cats near your house. How many cats there will be near your house in 9 years? In 9 years and 10 months? In 9 years and 11 months? In 10 years?