ODEs - 104285. Semester: Spring. Year: 2011

HW-1. Deadline: Monday, March 14, 6 pm

1. Use the uniqueness theorem to prove that any solution of the equation $x^{\prime}(t)=x(t)$ defined for all $t \in \mathbb{R}$ has the form $x(t)=C e^{t}$.
2. In the lecture we checked that the equation $x^{\prime}(t)=\sqrt{|x(t)|}$ has two solutions satisfying the initial condition $x(0)=0$: the solution $x(t) \equiv 0$ and the solution $\widetilde{x}(t)=\frac{t^{2}}{4}$ as $t \geq 0, \quad \widetilde{x}(t)=0$ as $t \leq 0$.
How many there are other solutions of the same equation satisfying the same initial condition? To answer, consider the functions
$\widehat{x}(t)=\frac{t^{2}}{4}$ as $t \geq 0, \quad \widehat{x}(t)=-\frac{t^{2}}{4}$ as $t \leq 0 ;$
$\widetilde{x}_{r}(t)=\frac{(t-r)^{2}}{4}$ as $t \geq r, \quad \widetilde{x}_{r}(t)=0$ as $t \leq r$,
where $r \in \mathbb{R}$ is a parameter. Which of the functions $\widehat{x}(t), \widetilde{x}_{r}(t)$ satisfy the same equation and the same initial condition? Draw the graphs of these functions and explain why there is no contradiction to the uniqueness theorem.
3.(*) (Related to problem 2). Let $y(t)$ be one of solutions of the equation $y^{\prime}(t)=\sqrt{|y(t)|}$ satisfying the initial condition $y(1)=1 / 4$ and defined for all $t \in \mathbb{R}$. Is it true that $y(t)=t^{2} / 4$ for all $t \geq 0$? If yes - prove it, if no - give a counterexample.
3. Let $f(t, x)$ be a function of two variables satisfying the requirements in the existence and uniqueness theorem in the open set $U=\{(t, x): t<1.01\}$. Let $x(t)$ and $\widetilde{x}(t)$ be solutions of the same equation $x^{\prime}(t)=f(t, x(t))$ defined on the interval $t \in(-\infty, 1)$. Assume that $\lim _{t \rightarrow 1} x(t)=\lim _{t \rightarrow 1} \widetilde{x}(t)=B$, where B is a finite number (nor $\pm \infty$). Prove that $x(t)$ and $\widetilde{x}(t)$ is the same function.
4. Given a real $r>0$ find an autonomous ordinary differential equation which has solutions $x(t)=\frac{1}{C-r t}$ with any $C \in \mathbb{R}$.
5. (Related to problem 5). Assume that the population of cats near your house changes in time according to the equation $x^{\prime}(t)=0.01 x^{2}(t)$ where $x(t)$ is the number of cats at time t measured in years. Assume that today there are 10 cats near your house. How many cats there will be near your house in 9 years? In 9 years and 10 months? In 9 years and 11 months? In 10 years?
