ODEs - 104285. Semester: Spring. Year: 2011

HW-2. Deadline: Monday, March 21, 6 pm

Dictionary:
inflection point $=$ nikudat $^{\text {pitul }}{ }^{\prime}=($ Rus $)$ tochka peregiba
convex $=$ kamur $=($ Rus $)$ vipuklii
concave $=$ kaur $=($ Rus $)$ vognutii
Remind that a point $a \in \mathbb{R}$ is called an inflection point of a function $f(x)$ if for some positive ϵ the function $f(x)$ is concave in the interval $(a-\epsilon, a)$ and convex in the interval ($a, a+\epsilon$), or vise a versa.

1. Let $f(x) \in C^{1}(\mathbb{R}), f(a)=f(b)=0$, and $f(x) \neq 0$ for $x \in(a, b)$.

Let $t_{0} \in \mathbb{R}, x_{0} \in(a, b)$. Let $x(t)$ be the solution of the equation $x^{\prime}(t)=f(x(t))$ satisfying the initial condition $x\left(t_{0}\right)=x_{0}$ and defined for all $t \in \mathbb{R}$. Prove that the function $x(t)$ has at least one inflection point.
2. Draw the graph of a function $f(x) \in C^{1}(\mathbb{R})$ such that $f(0)=f(100)=0, f(x) \neq 0$ for $x \in(0,100)$ and such that for any $t_{0} \in \mathbb{R}$ and any $x_{0} \in(0,200)$ the solution of the equation $x^{\prime}(t)=f(x(t))$ satisfying the initial condition $x\left(t_{0}\right)=x_{0}$ and defined for all $t \in \mathbb{R}$ has 10 inflection points. Prove that for your graph of $f(x)$ it is so.
3. Let $x_{1}(t), \ldots, x_{7}(t)$ be the solutions of the equation $x^{\prime}(t)=\sin \left(e^{x(t)}\right)$ satisfying the initial condition 3.1, ... 3.7 below and defined for all t. Draw the 7 graphs, of $x_{1}(t), \ldots, x_{7}(t)$ in the same (t, x) plane. For each of the functions $x_{1}(t), \ldots, x_{7}(t)$ find its value at the inflection point.
1.1. $x(0)=2 \quad$ 1.2. $x(1)=2 \quad$ 1.3. $x(0)=3 \quad$ 1.4. $x(1)=3$
1.5. $x(-1)=4 \quad$ 1.6. $x(-1)=5 \quad$ 1.7. $x(-1)=6$
4. Let $f(x)=(x-1)^{2}(x-2)^{3}(x+1)^{4}(x+2)^{5}$ and let $x_{1}(t), \ldots, x_{7}(t)$ be the solutions of the equation $x^{\prime}(t)=f(x(t))$ satisfying the initial condition $4.1, \ldots, 4.7$ below and defined for all t. Draw the 7 graphs, of $x_{1}(t), \ldots, x_{7}(t)$ in the same (t, x) plane.
4.1. $x(0)=-1.5 \quad$ 4.2. $\quad x(1)=-1$
4.3. $x(2)=-0.5$
4.4. $x(3)=0.5$
4.5. $\quad x(4)=1 \quad 4.6 . \quad x(5)=1.5 \quad 4.7 . \quad x(6)=1.5$

