ODEs - 104285. Semester: Spring. Year: 2012

## HW-3. Deadline: Monday, April 30, 6 pm

1. For each of the given equations and for each of the initial conditions, draw the graph of the solution $x(t)$ defined on maximal possible timeinterval $\left(t^{-}, t^{+}\right)$, find $t^{-}$and $t^{+}$, find the points of local maxima and local minima, and find the limits of $x(t)$ as $t \rightarrow t^{+}$and $t \rightarrow t^{-}$:
$1.1 x^{\prime}(t)=\left(x^{2}(t)-7 x(t)+10\right) \cdot(t+3)$
a) $x(0)=6$
b) $x(0)=3$
c) $x(0)=1$
$1.2 x^{\prime}(t)=\left(x^{2}(t)-7 x(t)+10\right) \cdot \frac{t+1}{t^{2}+1}$
a) $x(0)=6$
b) $x(0)=3$
c) $x(0)=1$
$1.3 x^{\prime}(t)=\left(x^{2}(t)-7 x(t)+10\right) \cdot \frac{t^{2}}{\left(t^{3}+1\right)^{2}}$
a) $x(0)=6$
b) $x(0)=3$
c) $x(0)=1$
2. Let $x(t)$ be solution of the equation $x^{\prime}(t)=(-2 x(t)+t+5)^{2}$ satisfying the initial conditions
a) $x(0)=5 / 2$
b) $x(0)=2$
c) $x(0)=3$
and defined on maximal possible time interval $\left(t^{-}, t^{+}\right)$. Find $t^{-}, t^{+}$and a formula for $x(t)$ (without integrals). If $t^{+}=\infty$ find $\lim _{t \rightarrow \infty} \frac{x(t)}{t}$.
3. Find a formula, with an integral, for the solution $x(t)$ of the equation $x^{\prime}(t)=-x(t)+\frac{\sqrt{t^{2}+1}}{x^{2}(t)}$ satisfying the initial condition $x(0)=1$.
4. Find a formula, without integrals, for the solution of the equation

$$
x^{\prime}(t)=\frac{x+1}{t}+1
$$

satisfying the initial condition $x(1)=0$
(Hint: make substitution $\widetilde{x}(t)=x(t)+1$ ).

