ODEs - 104285. Semester: Spring. Year: 2012 HW-3. Deadline: Monday, April 30, 6 pm

1. For each of the given equations and for each of the initial conditions, draw the graph of the solution x(t) defined on maximal possible time-interval (t^-, t^+) , find t^- and t^+ , find the points of local maxima and local minima, and find the limits of x(t) as $t \to t^+$ and $t \to t^-$:

1.1
$$x'(t) = (x^{2}(t) - 7x(t) + 10) \cdot (t + 3)$$

a) $x(0) = 6$ b) $x(0) = 3$ c) $x(0) = 1$
1.2 $x'(t) = (x^{2}(t) - 7x(t) + 10) \cdot \frac{t+1}{t^{2}+1}$
a) $x(0) = 6$ b) $x(0) = 3$ c) $x(0) = 1$
1.3 $x'(t) = (x^{2}(t) - 7x(t) + 10) \cdot \frac{t^{2}}{(t^{3}+1)^{2}}$
a) $x(0) = 6$ b) $x(0) = 3$ c) $x(0) = 1$
2. Let $x(t)$ be solution of the equation $x'(t) = (-2x(t) + t + 5)^{2}$

satisfying the initial conditions

a) x(0) = 5/2 b) x(0) = 2 c) x(0) = 3

and defined on maximal possible time interval (t^-, t^+) . Find t^-, t^+ and a formula for x(t) (without integrals). If $t^+ = \infty$ find $\lim_{t\to\infty} \frac{x(t)}{t}$.

Find a formula, with an integral, for the solution x(t) of the equation x'(t) = −x(t) + √t²+1/x²(t) satisfying the initial condition x(0) = 1.
 Find a formula, without integrals, for the solution of the equation

$$x'(t) = \frac{x+1}{t} + 1$$

satisfying the initial condition x(1) = 0(Hint: make substitution $\tilde{x}(t) = x(t) + 1$).