ODEs - 104285. Semester: Spring. Year: 2011

HW-3. Deadline: Monday, April 4, 6 pm

1. The level of love $x(t)$ between Sara and Itsik (who listened my course and know optimization by feedback rather than by rigid plan) changes according to the equation $x^{\prime}(t)=f(x(t))$, where $f(x)=x(1-x)-\frac{1}{2} x$. Here t is measured in weeks and $x(t)$ is a part of the love of Romeo and Djulyeta.

In how much time the level of love will be in the interval $(0.49,0.51)$ if at the initial time $t=0$ the level of love is
1.1. $x(0)=0.1$
1.2. $x(0)=0.9$
2. Let $x(t)$ be solution of the equation $x^{\prime}(t)=f(x(t))$, where $f(x)$ is a function given below, satisfying the initial condition $x(3)=5$. For which $a \in \mathbb{R}$ there exists t_{1} such that $x\left(t_{1}\right)=a$? For all such a give a formula for t_{1} (integral in the formula is OK).
2.1. $f(x)=\left(x^{2}-1\right) \sin x \quad$ 2.2. $f(x)=\sin x+\cos x \quad$ 2.3. $f(x)=\ln \left(x^{2}+2 x+1.5\right)$
3. For each of the function given in problem 2, draw the phase portraits for the equation $x^{\prime}(t)=f(x(t))$ and distinguish all stable singular points.
4. For each of the function given in problem 2, draw in the same (t, x)-plane four graphs - the graphs of solutions of the equation $x^{\prime}(t)=f(x(t))$ satisfying the initial condition $x(0)=-1, x(0)=1 / 2, x(0)=3, x(0)=4$.
5. Let $x(t)$ be the solution of the equation $x^{\prime}(t)=f(x(t))$, where $f(x)$ is one of the functions given below, satisfying the initial condition $x(3)=5$. Find $x(10)$ (a number, no integrals).

5.1. $f(x)=x^{2}+4 \quad$ 5.2. $f(x)=x^{2}-4 x+3 \quad$ 5.3. $f(x)=\sqrt{x+5}$

6. Find the formulas for two different solutions of the equation $x^{\prime}(t)=x^{2}(t)$ such that each of them is defined on maximal possible time-interval, one of them goes to ∞ as $t \rightarrow t^{+}$and the other goes to 0 as $t \rightarrow t^{+}$.
7. Find the maximal time-interval and the formula for the solution of the equation

$$
7.1 \quad x^{\prime}(t)=\frac{\sqrt{x^{2}(t)-1}}{x(t)}, \quad \text { 7.2. } \quad x^{\prime}(t)=\frac{\sqrt{x^{2}(t)+1}}{x(t)}
$$

satisfying the initial condition $x(0)=-2$. Draw the graphs of this solutions.

