ODEs - 104285. Semester: Spring. Year: 2011

HW-5. Deadline: Sunday, May 15, 2 pm

1. A big body, which does not move, attracts a small body of mass $m \mathrm{~kg}$ with the force
a) $F=\frac{1}{x \ln x}$,
b) $F=\frac{1}{\sqrt{x}}$
c) $F=\frac{1}{x \sqrt{x}}$
$\mathrm{kg} \cdot \mathrm{m} / \mathrm{sec}^{2}$, where x is the distance between the bodies (in meters). At the initial time $(t=0)$ the distance between the bodies is 10 meters and the initial velocity of the small body is $v_{0} \mathrm{~m} / \mathrm{sec}$ directed in such a way that the distance between the bodies starts to increase. In which time t^{*} the distance between the bodies will be 20 meters? The answer depends on v_{0} and m. If the answer is not unique you should find all answers. Integrals in the answers are OK.
2. A pendulum is described by the equation

$$
\theta^{\prime \prime}=-\frac{g}{l} \sin \theta
$$

where l is the pendulum length, the angle θ is measured in radians, the positive direction is anticlockwise, and $\theta=0 \bmod 2 k \pi$ corresponds to the position of stable equilibrium. At the initial time $t=0$ the pendulum is horizontal $\left(\theta(0)=\theta_{0}=\pi / 2\right)$ and has initial velocity $\theta^{\prime}(0)=v_{0}=\sqrt{g} \mathrm{rad} / \mathrm{sec}$ directed anticlockwise. In which time t_{1} the pendulum will pass (for the first time) the position of stable equilibrium? This means that

$$
t_{1}=\min \left\{t \geq 0: \quad \theta\left(t_{1}\right)=0 \bmod 2 \pi k\right\}
$$

The answer depends on the length l and you should solve the problem for
a) the length l is 1 meter
b) the length l is 3 meters.

Integrals in the answers are OK. Which velocity the pendulum will have at the time t_{1} ?

