ODEs - 104285. Semester: Spring. Year: 2011

HW-6. Deadline: Monday, May 30, 2 pm

1. Find the solution $x(t)$ of the equation given below satisfying the initial condition

$$
x(0)=0 .
$$

Without integrals in the answer. Try to understand the maximal possible time interval for the solution. Draw the graph of $x(t)$ containing as much information as you can determine.

$$
\begin{gathered}
\text { 1.1. } x^{\prime}=\frac{x}{t+1}+t^{2} \\
\text { 1.2. } x^{\prime}=(x+2)(x-3) \cdot \sin (t-1)
\end{gathered}
$$

$$
\text { 1.3. } x^{\prime}=\frac{x(t+1)}{x^{2}+(t+1)^{2}} \quad \text { hint: make a change } \tilde{t}=t+1
$$

$$
\text { 1.4. } x^{\prime}=\frac{x-t}{3 t-2 x+1}
$$

2. Let

$$
x^{\prime}=A x, A=\left(\begin{array}{cccc}
3 & 1 & 4 & 0 \\
-2 & 3 & 2 & 1 \\
7 & 4 & 0 & 3 \\
0 & 0 & 1 & 2
\end{array}\right), \quad x=\left(\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right), \quad x(0)=\left(\begin{array}{l}
1 \\
1 \\
1 \\
0
\end{array}\right) .
$$

Find $a, b, c \in \mathbb{R}$ such that $x_{2}(t)=a+b t+c t^{2}+o\left(t^{2}\right)$ as $t \rightarrow 0$.
3. Give an example of a basis of the vector space of all solutions of the system

$$
x_{1}^{\prime}=5 x_{1}-x_{2}, \quad x_{2}^{\prime}=18 x_{1}-6 x_{2}
$$

and find an explicit formula for the solution of this system satisfying the initial conditions $x_{1}(0)=0, x_{2}(0)=1$.
4. Give an example of a basis of the vector space of all solutions of the system

$$
x^{\prime}=T J T^{-1} x, \quad T=\left(\begin{array}{ccc}
2 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 0
\end{array}\right), \quad J=\left(\begin{array}{ccc}
3 & 1 & 0 \\
0 & 3 & 1 \\
0 & 0 & 3
\end{array}\right)
$$

and find the solution satisfying the initial condition $x_{1}(0)=1, x_{2}(0)=x_{3}(0)=0$. (Hint: make a linear change $x=T y$).

