ODEs - 104285. Semester: Spring. Year: 2011

## HW-7. Deadline: Monday, June 6, 2 pm

1. Find
(a) $e^{\left(\begin{array}{ll}2 & 1 \\ 0 & 3\end{array}\right)}$,
(b) $e^{\left(\begin{array}{cc}-1 & -1 \\ 1 & -1\end{array}\right)}$,
(c). $e^{\left(\begin{array}{cc}0 & 1 \\ -4 & 4\end{array}\right)}$.

Solving this you should use the following way of finding $e^{A}$, where $A$ is an $n \times n$ matrix. Consider the system $\dot{x}=A x$. Fix $i \in 1, \ldots, n$. You know how to find the solution $x(t)$ of the system satisfying the initial condition $x(0)=$ vector whose $i$-th component is equal to 1 and all other component are equal to 0 . On the other hand, you know that $x(t)=e^{A t} x(0)$. It follows that the vector $x(1)$ is exactly the $i$-th column of the matrix $e^{A}$.
2. Find $a \in \mathbb{R}$ such that the system

$$
\dot{x}_{1}=2 x_{1}+x_{2}+a x_{3}, \dot{x}_{2}=x_{1}+2 x_{2}+3 x_{3}, \dot{x}_{3}=2 x_{2}+x_{3}
$$

has a constant non-zero solution (that is, solution of the form $x_{1}(t) \equiv C_{1}, x_{2}(t) \equiv$ $C_{2}, x_{3}(t) \equiv C_{3}$, where $C_{1}, C_{2}, C_{3}$ are constants, $\left.\left(C_{1}, C_{2}, C_{3}\right) \neq(0,0,0)\right)$. Fir this $a$, find $C_{1}, C_{2}, C_{3}$.
3. Give an example of a $2 \times 2$ real matrix $A$ such that the system $\dot{x}=A x$ has a solution with the first coordinate $x_{1}(t)=e^{-3 t}(7 \sin (\sqrt{2} t)+8 \cos (\sqrt{2} t))$. Find the second coordinate of the solution.
4. (No complex numbers in the answers). A $3 \times 3$ real matrix $A$ has eigenvector $\left(\begin{array}{c}4-2 i \\ 1 \\ 2+i\end{array}\right)$ corresponding to the eigenvalue $(7-5 i)$ and eigenvector $\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right)$ corresponding to the eigenvalue $(-3)$.
4.1. Find a basis of all real solutions of the system $\dot{x}=A x$
4.2. Under which condition on real numbers $\alpha_{1}, \alpha_{2}, \alpha_{3}$ the solution of the system $\dot{x}=A x$ tends to $0 \in \mathbb{R}^{3}$ as $t \rightarrow \infty$ ?
4.3. Find the solution of the system $\dot{x}=A x$ satisfying the initial condition $x(0)=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$.
5. A $5 \times 5$ real matrix $A$ has eigenvector $\left(\begin{array}{c}4-2 i \\ 1 \\ 2+i \\ 1 \\ i\end{array}\right)$ corresponding to the eigenvalue $(-2-3 i)$, eigenvector $\left(\begin{array}{l}1 \\ 2 \\ 0 \\ 0 \\ 1\end{array}\right)$ corresponding to the eigenvalue 2 , and eigenvector

2
$\left(\begin{array}{c}3-i \\ 2 \\ i \\ 2+i \\ 0\end{array}\right)$ corresponding to the eigenvalue (8i). Under which condition on real num-
bers $\alpha_{1}, \alpha_{2}, \alpha_{3}$ the solution of the system $\dot{x}=A x$ satisfying the initial conditions
$x(0)=\left(\begin{array}{c}\alpha_{1} \\ \alpha_{2} \\ \alpha_{3} \\ 0 \\ 0\end{array}\right)$ tends to $0 \in \mathbb{R}^{5}$ as $t \rightarrow \infty$ ?
6. Find a basis of the space of all real solutions of the system $x^{\prime}=A x$, where

$$
A=\left(\begin{array}{ccc}
2 & 1 & -1 \\
1 & 2 & 0 \\
1 & 0 & 2
\end{array}\right)
$$

( $A$ has the only eigenvalue 2 )

