ODEs - 104285. Semester: Spring. Year: 2011

HW-7. Deadline: Monday, June 6, 2 pm

1. Find

	(2	1	(-1)	1 - 1	(0	1
(a)	e^{0}	$3 \Big)_{,}$	(b) e^{1}	-1,	(c). $e^{\begin{pmatrix} 0\\ -4 \end{pmatrix}}$	4) _.

Solving this you should use the following way of finding e^A , where A is an $n \times n$ matrix. Consider the system $\dot{x} = Ax$. Fix $i \in 1, ..., n$. You know how to find the solution x(t) of the system satisfying the initial condition x(0) = vector whose *i*-th component is equal to 1 and all other component are equal to 0. On the other hand, you know that $x(t) = e^{At}x(0)$. It follows that the vector x(1) is exactly the *i*-th column of the matrix e^A .

2. Find $a \in \mathbb{R}$ such that the system

$$\dot{x}_1 = 2x_1 + x_2 + ax_3, \ \dot{x}_2 = x_1 + 2x_2 + 3x_3, \ \dot{x}_3 = 2x_2 + x_3$$

has a constant non-zero solution (that is, solution of the form $x_1(t) \equiv C_1, x_2(t) \equiv$ $C_2, x_3(t) \equiv C_3$, where C_1, C_2, C_3 are constants, $(C_1, C_2, C_3) \neq (0, 0, 0)$). Fir this a, find C_1, C_2, C_3 .

3. Give an example of a 2×2 real matrix A such that the system $\dot{x} = Ax$ has a solution with the first coordinate $x_1(t) = e^{-3t} \left(7\sin(\sqrt{2}t) + 8\cos(\sqrt{2}t)\right)$. Find the second coordinate of the solution.

4. (No complex numbers in the answers). A 3×3 real matrix A has eigenvector $\begin{pmatrix} 4-2i\\1\\2+i \end{pmatrix}$ corresponding to the eigenvalue (7-5i) and eigenvector $\begin{pmatrix} 1\\1\\2 \end{pmatrix}$ corresponding to the eigenvalue (-3)

4.1. Find a basis of all real solutions of the system $\dot{x} = Ax$

4.2. Under which condition on real numbers $\alpha_1, \alpha_2, \alpha_3$ the solution of the system $\dot{x} = Ax$ tends to $0 \in \mathbb{R}^3$ as $t \to \infty$?

4.3. Find the solution of the system $\dot{x} = Ax$ satisfying the initial condition $x(0) = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.$

5. A 5 × 5 real matrix A has eigenvector $\begin{pmatrix} 4 - 2i \\ 1 \\ 2 + i \\ 1 \\ i \end{pmatrix}$ corresponding to the eigenvalue (-2-3i), eigenvector $\begin{pmatrix} 1 \\ 2 \\ 0 \\ 0 \\ 1 \end{pmatrix}$ corresponding to the eigenvalue 2, and eigenvector

 $\begin{pmatrix} 3-i\\2\\i\\2+i\\0 \end{pmatrix} \text{ corresponding to the eigenvalue (8i). Under which condition on real numbers } \alpha_1, \alpha_2, \alpha_3 \text{ the solution of the system } \dot{x} = Ax \text{ satisfying the initial conditions} \\ x(0) = \begin{pmatrix} \alpha_1\\\alpha_2\\\alpha_3\\0\\0 \end{pmatrix} \text{ tends to } 0 \in \mathbb{R}^5 \text{ as } t \to \infty?$

6. Find a basis of the space of all real solutions of the system x' = Ax, where

$$A = \begin{pmatrix} 2 & 1 & -1 \\ 1 & 2 & 0 \\ 1 & 0 & 2 \end{pmatrix}$$

(A has the only eigenvalue 2)