ODEs - 104285. Semester: Spring. Year: 2011

HW-9. You should do it by June 22

No complex numbers in the final answers!

- 1. Let $y(t) = e^{2t} \cos(5t)$.
- a. Find $P(\frac{d}{dt})(y(t))$ if $P(\lambda) = \lambda^3 2\lambda^2 + \lambda 1$
- b. Let $P(\lambda) = Q(\lambda)(\lambda^2 4\lambda + a)$. Find $a \in \mathbb{R}$ such that $P(\frac{d}{dt})(y(t)) = 0$ for any polynomial $Q(\lambda)$.
 - 2. Find the set of all solutions of the following equations:
 - 2.1. y''''''''(t) = y(t) (the 10-th derivative of y(t) is equal to y(t))
 - 2.2. y''''''(t) + y(t) = 0 (the 7-th derivative of y(t) plus y(t) is 0).
 - 2.3. y'''(t) + y'(t) = sint + 1
 - 2.4. $P(\frac{d}{dt})(x(t)) = e^t$, $P(\lambda) = (\lambda^2 + 1)^4$
 - 2.5. $P(\frac{d}{dt})(x(t)) = e^t$, $P(\lambda) = (\lambda^2 1)^4$
 - 2.6 $P(\frac{d}{dt})(x(t)) = cost, \ P(\lambda) = (\lambda^2 1)^4$
 - 2.7. $P(\frac{d}{dt})(x(t)) = sint, \ P(\lambda) = (\lambda^2 + 1)^4(\lambda + 1)$
- 2.8. $P(\frac{d}{dt})(y(t)) = e^t sint + e^{2t} cos(3t) + cos(3t) + e^{4t}$, where
- $P(\lambda) = (\lambda^2 2\lambda + 2)^7 (\lambda^2 4\lambda + 13)^9$