ODEs - 104285. Semester: Spring. Year: 2012

HW-4. Deadline: Monday, May 21, 6 pm

1. A rocket has been launched up from the Earth surface with the initial velocity $v_{0}=(1-\epsilon) v_{0, \text { crit }}$, where $v_{0, \text { crit }}=\sqrt{2 g R}$ is the "escape velocity" (or second cosmic velocity), $\epsilon>0$, and R is the radius of the Earth. Let $t^{*}=t^{*}(\epsilon)$ be the time in which the rocket will reach its maximal height. Obtain explicit (without integrals) formula for the function $t^{*}(\epsilon)$ and characterize the behavior of $t^{*}(\epsilon)$ ar $\epsilon \rightarrow 0$. For which ϵ (approximately) the rocket will reach its maximal height in a month after it has been launched?

Solving the problem use the equation $x^{\prime \prime}=-\frac{g R^{2}}{x^{2}}$ where $x=x(t)$ is the distance between the rocket and the center of the Earth. You will have to compute the integral of the form $\int \frac{d x}{\sqrt{\frac{a}{x}+b}}$. Enjoy integration techniques from hedva or infi.
2. A big body which does not move repels a small body of mass 3 kg with the force $1 / x$ (in $\mathrm{kg} \cdot \mathrm{m} / \mathrm{sec}^{2}$) where $x=\overline{x(t)}$ is the distance between the bodies (in meters). At the initial time-moment the distance between the bodies is 4 meters and the small body has velocity $2 \mathrm{~m} / \mathrm{sec}$ towards the big body. Find the minimal distance $x_{\text {min }}$ between the bodies (without integrals in the answer) and find time t_{1} such that $x\left(t_{1}\right)=x_{\text {min }}$ (integrals in the answer OK).

