ODEs - 104285. Semester: Spring. Year: 2012

HW-6. You should do it by June 18

1. Let $P(\lambda)=\left(\lambda-\lambda_{0}\right)^{r}$ where r is a positive integer. Prove that the equation $P\left(\frac{d}{d t}\right) x(t)=0$ has solutions $x^{i} e^{\lambda_{0} t}, i=0,1, \ldots, r-1$ and prove that these solutions are linearly independent.

No complex numbers in the final answers to problems 2-5
2. Let $x(t)=e^{2 t} \cos (5 t)$.
a. Find $P\left(\frac{d}{d t}\right)(x(t))$ if $P(\lambda)=\lambda^{3}-2 \lambda^{2}+\lambda-1$
b. Let $P(\lambda)=Q(\lambda)\left(\lambda^{2}-4 \lambda+a\right)$.

Find $a \in \mathbb{R}$ such that $P\left(\frac{d}{d t}\right)(x(t))=0$ for any polynomial $Q(\lambda)$.
3. Find the set of all solutions of the following equations:
3.1. $x^{\prime \prime \prime \prime \prime \prime \prime \prime \prime \prime \prime}(t)=x(t)$ (the 10-th derivative of $x(t)$ is equal to $x(t)$)
3.2. $x^{\prime \prime \prime \prime \prime \prime \prime \prime}(t)+x(t)=0$ (the 7 -th derivative of $x(t)$ plus $x(t)$ is 0).
3.3. $x^{\prime \prime \prime}(t)+x^{\prime}(t)=0$
4. Find the set of all solutions of the equation $P\left(\frac{d}{d t}\right)(x(t))=0$ where
4.1. $P(\lambda)=\left(\lambda^{2}+1\right)^{4}$
4.2. $P(\lambda)=\left(\lambda^{2}-1\right)^{4}$
4.3 $P(\lambda)=\left(\lambda^{2}-1\right)^{4}$
4.4. $P(\lambda)=\left(\lambda^{2}+1\right)^{4}(\lambda+1)$
4.5. $P(\lambda)=\left(\lambda^{2}-2 \lambda+2\right)^{7}\left(\lambda^{2}-4 \lambda+13\right)^{9}$
5. Find a partial solution of the following equations using the method of variation of constant:
5.1. $x^{\prime \prime}+x=\ln t, \quad x=x(t), t>0$
5.2. $x^{\prime \prime \prime}+x=\sqrt{t}, \quad x=x(t), t>0$

