ODEs - 104285. Semester: Spring. Year: 2012
HW-7. You should do it by Sunday June 24 evening

1. Find a partial solution of the equation

$$
P\left(\frac{d}{d t}\right)(y(t))=e^{t} \sin t+e^{2 t} \cos (3 t)+\cos (3 t)+e^{4 t},
$$

where
$P(\lambda)=\left(\lambda^{2}-2 \lambda+2\right)^{7}\left(\lambda^{2}-4 \lambda+13\right)^{9}$
(requires 8-10 min)
2. Let

$$
x^{\prime}=A x, A=\left(\begin{array}{cccc}
3 & 1 & 4 & 0 \\
-2 & 3 & 2 & 1 \\
7 & 4 & 0 & 3 \\
0 & 0 & 1 & 2
\end{array}\right), \quad x=\left(\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right), \quad x(0)=\left(\begin{array}{l}
1 \\
1 \\
1 \\
0
\end{array}\right) .
$$

Find $a, b, c \in \mathbb{R}$ such that $x_{2}(t)=a+b t+c t^{2}+o\left(t^{2}\right)$ as $t \rightarrow 0$.
(requires 5-7 min)
3. Find the set of all solutions of the system $x_{1}^{\prime}=x_{1}+x_{2}, x_{2}^{\prime}=6 x_{1}-4 x_{2}$ (without exponent of a matrix)
(requires 5-8 min)
4. Find e^{A} where $A=\left(\begin{array}{cc}1 & 1 \\ 6 & -4\end{array}\right)$ (without series in the answer).

Hint: find solution $x(t)$ of the system in problem 3 satisfying the initial condition $x(0)=\binom{1}{0}$. you know that $x(t)=e^{t A}\binom{1}{0}$ and consequently $e^{A}\binom{1}{0}=x(1)$ which allows you to find the first column of e^{A}. In a similar way you can find the second column.
Requires 10 min .
4. Let

$$
T=\left(\begin{array}{ccc}
1 & 3 & -2 \\
2 & 7 & 0 \\
1 & 1 & 3
\end{array}\right), \quad J=\left(\begin{array}{ccc}
3 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & -2
\end{array}\right) .
$$

Find the set of all solutions of the system $x^{\prime}=A x$ where $A=T J T^{-1}$
(requires 1 min since you know a basis of \mathbb{R}^{3} consisting of eigenvalues of A).
5. Let A be a real 2×2 matrix with eigenvalue $2-3 i$ and corresponding eigenvector $\binom{5+4 i}{3-2 i}$. Find the set of all real solutions of the system $x^{\prime}=A x$. No complex numbers, signs Re, Im in the final answer.

Hint. Find a basis of complex-valued solutions consisting of vector functions $x^{*}(t)$ and conjugate (tsamud) $\bar{x}^{*}(t)$, then (as we did many times) the real and the imaginary part of $x^{*}(t)$ is a basis of the vector space of real solutions.
(requires 8-9 min)

