1. FIRST ORDER ODES. SIMPLEST EXAMPLES.
EXISTENCE AND UNIQUENESS THEOREM

Example 1.1. Consider the equation
(1.1) 2(t)=1

This is an equation because there is an unknown: the function x(t). This is a dif-
ferential equation of order 1 because it involves the first derivative of the unknown
function and does not involve higher order derivatives. This is an ordinary differ-
ential equation since the unknown function depends on one (independent) variable
only — the variable ¢.

Of course we may denote the unknown function as we like, as well as the in-
dependent variable. The notation ¢ corresponds to the physical interpretation of
most ODE’s when the independent variable is the time. For example, equation
(1.1) means, in physical language, that a body moves along the straight line, the
z-axes, with the constant velocity 1.

A solution of any differential equation is a function satisfying this equation and
defined on an open interval. Any single solution is called partial solution. The set
of all solutions is called general solution.

For example, equation (1.1) has partial solutions z(t) = t, z(t) =t — 2, z(t) =
t+3. The general solution of this equation is, as it easy to prove, z(t) = t+C, C € R.

The physical interpretation of infinitely many solutions of (1.1): different solu-
tions correspond do different initial position of the body. If we know the coordinate
of the body at any fixed time-moment ¢y then we will know its position at any time
t. Mathematically the initial position means the initial condition

(12) $(t0) = xg, to, g € R.

Equation (1.1) has unique solution defined for all ¢ and satisfying (1.2): z(t) =
To + t— to.

Example 1.2. Consider now the equation
(1.3) 2(t)=k-t

which means, in physical language, that the velocity of the body is proportional
to the time ¢. Like for (1.1) there are infinitely many solutions because the initial
condition (1.1) (physically: the initial position of the body) is not fixed. The general
solution is x(t) = kt?/2 + C, C € R. There is unique solution defined for all ¢ and
satisfying (1.2): x(t) = k(t?/2 — t3/2) + 0.

Example 1.3. Equation of the form
(1.4) a'(t) = f(t) € C°(R)

generalizes examples (1.1), (1.3). The notation C°(R) is used for the class of

continuous functions defined on the whole R. Fix any function F(¢) such that

F'(t) = f(t). Then the general solution of (1.4) can be written in the form

z(t) = F(t) + C, C € R. Like in previous examples, there is unique solution

defined for all ¢ and satisfying the initial conditions (1.2). To present this solution

it is convenient to take F(t) = ftto f(s)ds, i.e. to write down the general solution in
1
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the form z(t) = ftto f(s)ds+ C, C € R. Then it is clear that the solution satisfying
(1.2) has the form x(t) = xo + j;to f(s)ds.

Consider now another class of first order ODE’s

(1.5) () = f(a(t), f(zx) e COR).

Note that (1.4) and (1.5) are principally different. Physically (1.5) means that the
velocity of the body is determined by its position. It depends on time ¢, but via
the coordinate x(t) only. If the body is located at the point x = 5 then its velocity
is f(5) independently on when the body is at the point z = 5.

Example 1.4. The simplest example of an equation of the class (1.5) is
(1.6) 2/ (t) = kx(t)

One of solutions is z(t) = 0. Another solution is z(t) = e**. Note that e** 4 C is
NOT a solution unless C' = 0. The general solution is Ce*, C' € R. Substituting
the initial condition (1.2) we find a solution satisfying this initial condition and
defined for all t: z(t) = z¢e*(*~%). One can prove that this there are no other
solutions satisfying (1.2) and defined for all ¢.

Example 1.5. Our next example is another equation of the class (1.5):

(1.7) 2 (t) = 2%(t)
along with the initial condition
(1.8) z(0) = xo.

Theorem 1.6. If xg # 0 then (1.7) does not have a solutions defined for all t and
satisfying (1.8).

Note that if zg = 0 then such a solution exists: z(t) = 0.

I will prove below Theorem 1.6 for the case zg > 0. Moreover, I will prove that
in this case there is no solution defined on the interval (0, o).

Assume, to get contradiction, that xp > 0 and z(t) is a solution of (1.7) defined
for t € (0,00). The equation implies that 2’(t) > 0. Therefore xz(t) > zy. Since
xo > 0 then the equation implies 2'(t) > z3. (Note that if zgp < O then this is
not so). It follows that x(¢) is a strictly increasing function. It also follows that
z(t) — oo as t — oo. ' Therefore the inverse function t(x) is well defined on the
interval (zg,00) and one has

t(zg) =0, t(z) — o0 as x — oo.

By the theorem on the derivative of the inverse function one has #'(s) = 1/s% and
consequently

t(z) — t(zg) = t(z) = /w t'(s)ds = ’ % =—1/x+1/x

0 Zo

for any = > xg. Taking the limit as x — oo we get contradiction.

n fact, z(t) = fot z'(s)ds > fot z3ds =tz — oo as t — oo.



Exercises 1.7 (part of them - for the first TIRGUL). .

1. Prove that if 2o > 0 then (1.7) has no solution satisfying (1.8) and defined for
t € (0,b), where b > 1/x.

2. Prove Th. 1.6 for the case x¢ < 0 and obtain an analogous of statement 1.

3. Prove that Theorem 1.6 holds for the equation 2’(t) = 2™ (t) with any integer
N > 2.

4. Use the inverse function to find solution of the equation z’(t) = 2™ (¢) satisfying
the initial condition z(ty) = z¢ # 0 and defined on maximally possible interval.

Exercise 1.8. Prove that the equation 2’(t) = ¢ (22(t) + 1), ¢ > 0 does not have
any solution defined on an interval of length > 7/c.

Example 1.9. Consider the first order ODE

(1.9) 2'(t) = v/|x(t)|
and the initial condition
(1.10) x(0) =0.

The function z(¢) = 0 is a solution defined for all ¢ and satisfying (1.10). Such a
solution is not unique. Let us show that the function
(1.11) z(t)=0ast <0, x(t)=at’ ast >0

with suitable @ # 0 and s > 1 is also a solution of (1.9) satisfying (1.10). At first
note that if s > 1 then the function (1.11) belongs to the class C1(R), i.e. defined
for all ¢, differentiable, and has continuous derivative. It is clear that this function
satisfies (1.9) for any ¢t < 0. Therefore if s > 1 then (1.11) is a solution of (1.9)
if and only if ast*~! = \/]ats| for all t > 0. The latter holds either if a« = 0 or if
s—1=35/2,a >0 and as = /a, i.e. s =2, a =1/4. We obtain that equation
(1.9) has at least two solutions defined for all ¢ and satisfying (1.10): the zero
solution z(t) = 0 and solution (1.11) with s = 2,a = 1/4. In fact, equation (1.9)
has infinitely many solutions satisfying (1.10) — see Exercise 1.12.

Exercise 1.10. Prove the following

Lemma 1.11. If 2(t) is a solution of an equation x'(t) = f(x(t)) defined for all t
then for any a the function x,(t) = x(t+a) is also a solution of the same equation.

Explain why this statement is wrong for equations of the form ' (t) = f(¢, z(t)).

Exercise 1.12. Use Lemma 1.11 to construct infinitely many solutions of equation
(1.9) satisfying (1.10).

Exercise 1.13. Let 0 < a < 1. Construct infinitely many solutions of the equa-
tion z/(t) = |x(t)|* satisfying the initial condition z(0) = 0. Explain why the
construction does not work if o > 1.

The general form of the first order ODE is
(1.12) ()= f(t,z(t), f:U—R.
where f is a function of two variables, ¢ and z, defined on some domain U C xR of

the (¢, z)-plane. 2. In the examples given above U = R x R; in general this is not
required. For equations (1.4) the function f depends on ¢ only. For equations (1.5)

23 domain is an open connected set



it depends on x only. The equation z'(t) = x(t) + ¢ is an example of an equation
which belongs neither to class (1.4) nor to (1.5). A solution of (1.12) is a function
satisfying this equation and defined on an open interval of the t-axes. The graph of
any solution belongs to the open set U — the domain on which the function f(¢,x)
is defined.

Fix the initial condition
(1.13) x(to) = ®o, (to,z0) € U.
Note that the initial condition (1.13) means that the graph contains the point
(to, o).
Question A Is it true that equation (1.12) has a solution satisfying (1.13)?

Note that if z(¢) is a solution defined on an interval (a,b) satisfying (1.13) then
there are infinitely many solutions satisfying (1.13) — the restrictions of z(t) to any
sub-interval of (a,b) which contains, like (a,b), the point 5. Therefore the right
question about the uniqueness of solution of (1.12) satisfying (1.13) is as follows:

Question B Let x(t) and Z(¢) be solutions of the same equation (1.12), satis-
fying the same initial condition (1.13) and defined on the open intervals I and I
respectively. Is it true that z(t) = Z(¢) for any t € IN1?

The following theorem gives sufficient conditions on the function f(t,z) for the
positive answer to Questions A and B.

Theorem 1.14 (Existence and uniqueness theorem for first order ODEs). Assume
that at any point of U the function f(t,x) is

(a) continuous with respect to (t, x)

(b) differentiable with respect to x, and the derivative W s continuous.

Then for any point (to,xq) € U the answers to Questions A and B are positive.

This theorem is a part of a much more general existence and uniqueness theorem
for systems of ODEs of any order which will be proved in the end of this course.
Example 1.9 (and exercises after it) show that condition (b) cannot be taken away.
But this condition can be weakened — we will see how when proving the general
existence and uniqueness theorem.

Exercise 1.15. Consider the equation 2’(t) = (z(t)—1+t)Y/3-g(t, ), where g(t, z)
is a function of the class C*° (as a function of two variables). In each of the figures
1l.a — 1.d there are graphs of two solutions of this equation. Which of these pictures
are impossible?

Theorem 1.14 says nothing on the interval on which the solution is defined. The
maximal possible interval on which the a solution is defined might be very small
even if U = R x R, see Exercise 1.8. On the other hand, using Theorem 1.14 we can
understand the only reason why a solution defined an some interval (a,b) cannot
be prolonged to a bigger interval.

Definition 1.16. Let z(¢) and Z(¢) be solutions of the same ODE such that z(t)
is defined on an interval I and #(t) is defined on an interval I such that I ¢ I. We
will say that the solution Z(t) is a prolongation of the solution z(t) from I to I; we
will also say that the solution z(¢) can be prolonged from I to I.
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Theorem 1.17 (prolongation of solutions). Assume that the function f(t,x) sat-
isfies the assumptions of Theorem 1.14 with U = R x R. Let x(t) be a solution of
equation (1.12) defined on an interval (a,b).

1. If b < 0o and the function z(t) is bounded in a neighborhood of the point b 3 then
(a) there exists a finite limit limy_p x(t) = B
(b) the solution x(t) can be prolonged from (a,b) to (a,b+ €) for some € > 0.

2. Similarly, if a > —oo and the function x(t) is bounded in a neighborhood of the
point a then

(a) there exists a finite limit lim;_., x(t) = A the solution x(t)

(b) the solution x(t) can be prolonged from (a,b) to (a — €,b) for some ¢ > 0.

Proof. 1 will prove the first statement (the second statement is similar).

At first let us show that (a) = (b). This follows from the existence part of
Theorem 1.14. By this theorem equation (1.12) has a solution Z(¢) defined on an
interval (b —€,b+ ¢€),e > 0, and satisfying the condition Z(b) = B. Define

Z(t)==xz(t) as t € (a,b); Z(t) =Z(t) ast € [b,b+¢).

The function #(t) is defined on the interval (a,b+ ¢€). It is clear that it satisfies
equation (1.12) for any t # b. Since z(t) and Z(t) are solutions of (1.12) and the
function f(t,z) is continuous then z'(t) — f(b, B) as ¢ — b (from the left). Note
that 7/ (b) = f(b, B). It follows that the function Z(¢) is differentiable at the point
b and satisfies (1 12) at the point b. In other words Z(¢) is solution of (1.12) which
is a prolongation of the solution z(t) from (a,b) to (a,b+ €). We have proved that
(a) = (b).

Now let us prove (a). Assume, to get contradiction, that x(¢) does not have the
limit as ¢ — b. Since, by the assumption of Theorem 1.17, the function z(t) is
bounded in a neighborhood of b then the absence of the limit as ¢ — b implies the
existence of two sequences of points ¢, — b, ¢}, — b, each tends to b, such that the
sequences x(t;,) and x(t}) have different limits L', L” respectively. Let L' < L”".
Since the function z(t) is continuous we obtain the following property:

(P) for any € > 0 and any r € (L', L") there exists t € (b—¢,b) such that z(¢) = r.

Now we fix an arbitrary r»* € (L', L") and use the existence part of Theorem
1.14: there exists a solution x*(¢) of (1.12) defined on an interval (b—¢,b+¢€),e > 0
and satisfying the condition z*(b) = r*. The property (P) implies that the graphs
of solutions z(t) and z*(t) intersect at some point. By the uniqueness part of
Theorem Theorem 1.14 the solutions z(t) and 2*(¢) coincide on the interval (b—e, b).
Therefore z(t) has a limit as t — b, it is equal to 2*(b) = r*. Since r* is an arbitrary
point of the interval (L', L") then we get contradiction.

O

Corollary 1.18. Assume that the function f(t,x) satisfies the assumptions of The-
orem 1.14 with U = R x R. Let x(t) be a solution of equation (1.12) satisfying a
fized initial condition x(tg) = x¢ and defined on mazimally possible interval (a,b).
(By Theorem 1.14 such a solution is unique). If b < oo then x(t) is not bounded

3i.e. there exists M and & > 0 such that |z(t)] < M for any t € (b— §,b)
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in a neighbourhood of the point b. If a > —oo then x(t) is not bounded in a neigh-
bourhood of the point a.

Exercise 1.19 (for those who understood perfectly the proof of Theorem 1.17).
Try to formulate and prove a theorem on prolongation of solutions for the case that
f(t, x) satisfies the assumptions of Theorem 1.14 in a domain U C R x R.



