
1. First order ODEs. Simplest examples.
Existence and uniqueness theorem.

Theorem on prolongation of solutions.

2. Equation of the form x′(t) = F (x(t)), F (x) ∈ C1(R)

See Lecture Notes, Lectures 1,2.

3. Second order ODEs. Existence and uniqueness theorem.
Theorem on prolongation of solutions.

The general form of a second order ODE is

(3.1) x′′ = G(t, x, x′), G : Ω → R,

where x = x(t) is the unknown function and G is a function of three variables.
Like in the case of first order ODES the the function G is defined on a domain
Ω ⊂ R3; it is possible but not necessary that Ω = R3.

A solution of (3.1) is any function defined on an open interval t ∈ (a, b) and
satisfying this equation for any t of the interval. The latter requires that the
extended graph of x(t) belongs to the domain Ω. The extended graph of a solution
x(t), t ∈ (a, b) is, by definition, the curve {t, x(t), x′(t)}t∈(a,b) ⊂ R3.

The physical meaning of (3.1) is as follows: a body moves along a straight line
(the x-axes), its acceleration (Hebrew: teutsa) at time moment t depends on the
time moment, the location of the body at this time-moment, and the velocity of
the body at the same time-moment.

It is clear that (3.1) has infinitely many solution; the solution depends on the
initial position of the body and its initial velocity. One can expect that if the initial
position and the initial velocity are fixed then the solution is unique. Mathemati-
cally, the initial position and the initial velocity means the conditions

(3.2) x(t0) = x0, x′(t0) = v0, (t0, x0, v0) ∈ Ω.

These conditions are called the initial conditions.

Theorem 3.1 (Existence and uniqueness theorem). Assume that the function G :
Ω → R is continuous and has continuous first order derivatives with respect to the
second and the third argument (corresponding to x and x′).

1. For any point (t0, x0, v0) ∈ Ω equation (3.1) has a solution x(t) satisfying (3.2)
and defined on some time-interval (a, b) containing t0, satisfying (3.2).

2. For a point (t0, x0, v0) ∈ Ω. Let x(t) and x̃(t) be two solutions of the same
equation (3.1) satisfying the same condition (3.2) and defined on intervals I and Ĩ.
Then x(t) = x̃(t) for any point t ∈ I ∩ Ĩ.

Remarks.

1. Like in the case of first order ODEs the existence part of the theorem does not
give any information on the maximal possible length of the interval (a, b).

2. In some cases the function G satisfies the assumption of Theorem 3.1 not at
all points of the domain Ω but at points of some sub-domain Ω′ ⊂ Ω. In this
case Theorem 3.1 remains true if (t0, x0, v0) ∈ Ω′ and if the extended graphs of the
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solutions x(t) and x̃(t) (see the definition above) in the second statement belong to
Ω′.

3. Theorem 3.1 and a similar theorem for the first order ODES (see Lecture 1) are a
part of a much more general existence and uniqueness theorem for systems of ODEs
of any order which will be explained and proved in the end of this course. Discussing
the general existence and uniqueness theorem (probably you already guess what is
it) we will see how the assumption on the function G can be weakened.

Important. Note that the geometric interpretation of the uniqueness part of
Theorem 3.1 and the theorem on the same topic for the first order ODEs are
different. In the case of first order ODEs the graphs of two solutions of the same
equations cannot intersect, unless they coincide or one of the graphs is a part of
the other. In the case of second order ODEs the intersection is possible. What is
impossible is the tangency of two graphs of the same equation. In fact, two solutions
satisfy the same initial condition (3.2) if and only if their (usual) graphs not only
intersect but also are tangent at the point (t0, x0).

For second order ODEs (and for kth order ODEs) there is an analogous of the
theorem on prolongation of solutions (see Lecture 1). I will restrict myself to the
simple part of this theorem, which is an almost immediate corollary of the existence
part of Theorem 3.1.

Theorem 3.2. Let x(t) be a solution of (3.1) defined on an interval t ∈ (a, b).
Assume that there exist limt→b x(t) = B1, limt→b x′(t) = B2, where B1 and B2 are
finite numbers. If Ω 6= R3 we also require that the point (t0, B1, B2) belongs to the
domain Ω. Then the solution x(t) can be prolonged to the interval (a, b + ε), where
ε > 0, i.e. there exists a solution defined on the interval (a, b + ε) which coincides
with x(t) at points t ∈ (a, b).

Similarly, if there exist limt→a x(t) = A1, limt→a x′(t) = A2, where A1 and A2 are
finite numbers such that (a,A1, A2) ∈ Ω then the solution x(t) can be prolonged to
the interval (a− ε, b), where ε > 0.

Proof. Let us prove the first statement (prolongation from (a, b) to (a, b + ε)). The
point (b,B1, B2) belongs to the domain Ω, therefore we can consider the initial
conditions x(b) = B1, x

′(b) = B2. The existence part of Theorem 3.1 states that
the equation has a solution x̃(t) satisfying these conditions and defined on interval
(b− ε, b + ε), ε > 0. Now the two solutions, x(t) and x̃(t) can be “pasted” together
as follows:

x̂(t) = x(t) as t ∈ (a, b),

x̂(t) = x̃(t) as t ∈ [b, b + ε).

The function x̂(t) is defined on the interval (a, b+ε) and it is clear that it satisfies
equation (3.1) at any point of this interval excerpt the point b. The fact that x(t)
and x̃(t) are solutions of this equation easily implies that the function x̂(t) has the
second derivative at the point b and satisfies equation (3.1) at this point, i.e. all is
OK at the point b too. You can easily prove this yourself or repeat the proof from
the implication (a) =⇒ (b) in Th. 1.17, Lecture 1. ¤


