
LECTURE B

Equations of the form x′ = V (x) (autonomous first order ODEs)

Attn.: Understanding this lecture requires drawing many graphs.

In this section we use the theorems on existence, uniqueness, and prolongation
of solutions (Theorems 1 and 2 from Lecture A) to present complete theory of
equations of the form

(1) x′ = V (x), V (x) ∈ C1(R).

Definition. A point x∗ of the x-axes is a singular point of Eq. (1) if V (x∗) = 0.

The singular points correspond to solutions x(t) ≡ const.

Proposition 1. A function x(t) ≡ x∗ is a solution of equation (1) if and only if
x∗ is a singular point.

Proof. This statement is obvious. ¤

Proposition 2. Any non-constant solution x(t) of (1), defined on any time-interval
(α, β), is a strictly monotonic function. Moreover x′(t) 6= 0 for any t ∈ (α, β).

Proof. It suffices to prove that x′(t) 6= 0. Assume (to get contradiction) that
x′(t0) = 0, where t0 ∈ (α, β). Then V (x(t0)) = 0 which means that x(t0) is a
singular point. Therefore we have a constant solution x̃(t) ≡ x(t0), t ∈ R (see
Proposition 1). The uniqueness theorem (which holds since V (x) ∈ C1) implies
x(t) = x̃(t) = x(t0) for any t ∈ (α, β). This contradicts to the assumption x(t) 6≡
const. ¤

Notation. In what follows x(t) is a solution of (1) satisfying the initial condition

(2) x(t0) = x0

and defined on maximal possible time-interval t ∈ (t−, t+).

Proposition 3. The solution x(t) is an increasing function if V (x0) > 0 and a
decreasing function if V (x0) < 0.

Proof. Follows from Proposition 2. ¤

Now we consider the following(all possible) cases.

CASE A. x0 ∈ (a, b), where a and b are singular points, a < b. There are no
singular points between a and b.

Lemma A1. In case A one has: a < x(t) < b for any t ∈ (t−, t+).

Proof. Follows from Proposition 1 and the uniqueness theorem. ¤

Lemma A2. In case A there are the limits

lim
t→t+

x(t) ∈ [a, b], lim
t→t−

x(t) ∈ [a, b].

Proof. Follows from Lemma A1 and Proposition 3. ¤

Lemma A3. In case A one has t+ = ∞, t− = −∞.
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Proof. Follows from Lemma A2 and the theorem on prolongation of solutions.
¤

Lemma A4. In case A the limits in Lemma A2 are as follows:

(a) if V (x0) > 0 then: (a1) limt→∞ x(t) = b; (a2) limt→−∞ x(t) = a.

(b) if V (x0) < 0 then: (b1) limt→∞ x(t) = a; (b2) limt→−∞ x(t) = b.

Proof. Let us prove (a1) (the proofs of (a2), (b1), (b2) are similar). We know
(Proposition 3, Lemmas A2, A3) that:
(i) x(t) is an increasing function;
(ii) limt→∞ x(t) = B, where x0 < B ≤ b.
We have to prove that B = b. Note that (i) and (ii) imply that there exists a
sequence tk → ∞ such that x′(tk) → 0. 1 2 Substituting these points to the
equation x′ = V (x) we obtain x′(tk) = V (x(tk)). Taking the limit as k → ∞ we
obtain 0 = V (B). Since x0 < B ≤ b, it follows B = b. 3 ¤

Conclusion for the case A: One has t+ = ∞, t− = −∞. If V (x0) > 0 then x(t)
is an increasing function tending to b as t →∞ and to a if t → −∞. If V (x0) < 0
then x(t) is a decreasing function tending to a as t →∞ and to b if t → −∞.

Case B. x0 > a, where a is “the most right“ singular point (i.e. there are no
singular points x∗ > a).

Lemma B1. In case B x(t) > a for any t ∈ (t−, t+), and also the following holds:

(a) If V (x0) > 0 then x(t) is an increasing function, t− = −∞, limt→−∞ x(t) = a.

(b) If V (x0) < 0 then x(t) is a decreasing function, t+ = ∞, limt→∞ x(t) = a.

Proof. Similar to the proofs of Lemmas A1–A4. ¤

Lemma B2. In case B one has the following:

(a) If V (x0) > 0 then limt→t+ x(t) = ∞.

(b) If V (x0) < 0 then limt→t− x(t) = ∞.

Remark. Statement (a) holds either for finite t+ or for t+ = ∞. Statement (b)
holds either for finite t− or for t− = −∞.

Proof. Let us proof (a) (the proof of (b) is similar). Assume (to get contra-
diction) that (a) does not hold. Then, since x(t) is an increasing function one has
limt→t+ x(t) = A < ∞. If t+ < ∞ we have a contradiction with the theorem on
prolongation of solutions. Therefore in the case t+ < ∞ we are done. Consider now
the case t+ = ∞. Since in the case B, subcase (a) one has V (x) > 0 for any x ≥ x0,
there exists minx∈[x0,A] V (x) = ε > 0. Since our assumptions imply x(t) ∈ [x0, A]
for any t ≥ t0, one has x′(t) = V (x(t)) ≥ ε > 0 for any t ≥ t0. It follows x(t) →∞
as t →∞: contradiction. ¤

1Exercise: prove this statement.
2One could think that (i) and (ii) imply that x′(t) → 0 as t → ∞. This is not so, as I

explained at the lecture.
3This proof was suggested by one of the students (who should let me know his name!). I was

going to present another proof, a bit more complicated.
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In case B it remains to find t+ if V (x0) > 0 and t− if V (x0) < 0. This can
be done using the inverse function t(x) (the inverse function exists since x(t) is
monotonic). Since t′(x) = 1

V (x) one has

(3) t(x)− t(x0) = t(x)− t0 =
∫ x

x0

ds

V (s)
=⇒ t(x) = t0 +

∫ x

x0

ds

V (s)
.

By Lemmas B1, B2 the inverse function t(x) is defined for x ∈ [a,∞). Take the
limit as x → ∞. Since in the case V (x0) > 0 one has t+ = t(∞) = limx→∞ t(x)
and in the case V (x0) < 0 one has t− = t(∞) = limx→∞ t(x), we obtain:

(4) V (x0) > 0 =⇒ t+ = t0 +
∫ ∞

x0

dx

V (x)
.

(5) V (x0) < 0 =⇒ t− = t0 +
∫ ∞

x0

dx

V (x)
.

Whether or not t+ < ∞ in case (4)or t− > −∞ in case (5) depends on the con-
vergence/divergence of the integrals, i.e. on the behavior of the function V (x) as
x → ∞. Note that in case (4) the function V (x) is positive for x ∈ [x0,∞) and
consequently t+ > t0, and in case (5) the function V (x) is negative for x ∈ [x0,∞)
and consequently t− < t0. 4

Conclusion for the case B: x(t) is a monotonic function bounded from below
by a. If V (x0) > 0 then x(t) is an increasing function, t− = −∞, t+ = (4),
limt→−∞ x(t) = a, limt→t+ x(t) = ∞. If V (x0) < 0 then x(t) is a decreasing
function, t+ = ∞, t− = (5), limt→∞ x(t) = a, limt→t− x(t) = ∞.

Case C. x0 < b, where b is “the most left“ singular point (i.e. there are no singular
points x∗ < b).

Lemma C1. In case C x(t) < b for any t ∈ (t−, t+), and also the following holds:

(a) If V (x0) > 0 then x(t) is an increasing function, t+ = ∞, limt→∞ x(t) = b.

(b) If V (x0) < 0 then x(t) is a decreasing function, t− = −∞, limt→−∞ x(t) = b.

Proof. Similar to the proofs of Lemmas A1–A4. ¤

Lemma C2. In case C one has the following:

(a) If V (x0) > 0 then limt→t− x(t) = −∞.

(b) If V (x0) < 0 then limt→t+ x(t) = −∞.

Proof. Similar to the proof of Lemma B2. ¤

To find t− in the case V (x0) > 0 and t+ in the case V (x0) < 0 we use the same
way as in case B (the inverse function t(x)). The difference with respect to case B
is that now the inverse function t(x) is defined for x ∈ (−∞, x0] and t− = t−(−∞)
in the case V (x0) > 0 and t+ = t+(−∞) in the case V (x0) < 0 (in the case B we

4Of course we know a priori that t+ > t0 and t− < t0; this is one of the ways to check that
there is no mistake/misprint in the answer.
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had +∞ instead of −∞). Therefore one has to take the limit in (3) as x → −∞
(not as x →∞ as in the case B) and we obtain:

(6) V (x0) > 0 =⇒ t− = t0 +
∫ −∞

x0

dx

V (x)
= t0 −

∫ x0

−∞

dx

V (x)

(7) V (x0) < 0 =⇒ t+ = t0 +
∫ −∞

x0

dx

V (x)
= t0 −

∫ x0

−∞

dx

V (x)
.

Whether or not t− > −∞ in case (6) or t+ < ∞ in case (7) depends on the
convergence/divergence of the integrals, i.e. on the behavior of the function V (x)
as x → −∞. Note that in case (6) the function V (x) is positive for x ∈ (−∞, x0] and
consequently t− < t0, and in case (7) the function V (x) is negative for x ∈ (−∞, x0]
and consequently t+ > t0 (see the footnote on the previous page).

Conclusion for the case C: x(t) is a monotonic function bounded from above by
b. If V (x0) > 0 then x(t) is an increasing function, t+ = ∞, t− = (6), limt→∞ x(t) =
b, limt→t− x(t) = −∞. If V (x0) < 0 then x(t) is a decreasing function, t− = −∞,
t+ = (7), limt→−∞ x(t) = b, limt→t+ x(t) = −∞.

Case D: there are no singular points.

In this case either V (x) > 0 for all x or V (x) < 0 for all x. Arguing in the
same way as in cases A - C we obtain:

If V (x) > 0 then x(t) is an increasing function which tends to ∞ as t → ∞ and
which tends to −∞ as t → −∞. In this case

t+ = t0 +
∫ ∞

x0

dx

V (x)
, t− = t0 +

∫ −∞

x0

dx

V (x)
= t0 −

∫ x0

−∞

dx

V (x)
.

If V (x) < 0 then x(t) is a decreasing function which tends to −∞ as t → ∞ and
which tends to ∞ as t → −∞. In this case

t+ = t0 +
∫ −∞

x0

dx

V (x)
= t0 −

∫ x0

−∞

dx

V (x)
, t− = t0 +

∫ ∞

x0

dx

V (x)
.

Note that in case D we might have any of the following cases:

t+ < ∞, t− > −∞ (example: V (x) = x2 + 1)

t+ = ∞, t− = −∞ (example: V (x) =
√

x2 + 1)

t+ < ∞, t− = −∞ (example: V (x) = ex)

t+ = ∞, t− > −∞ (example: V (x) = e−x).

I conclude this lecture with the following simple, but important theorem.

Proposition 4. (shift of time). Let x(t) be a solution of an autonomous
ODE x′ = V (x) defined on the interval (a, b). Fix s ∈ R. Then the function

x̃(t) = x(t + s), t ∈ (a− s, b− s)

is also a solution of the same equation.

Proof. x̃′(t) = d
dtx(t + s) = x′(t + s) = V (x(t + s)) = V (x̃(t)). ¤
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Note that this theorem and the uniqueness theorem (Lecture A, Theorem 1)
imply the following corollary: if V (x) ∈ C1(R) and x(t), x̃(t) are solutions of the
same equation x′ = V (x) defined on intervals (a, b), (ã, b̃) then any horizontal shift
of the graph of x̃(t) (to the left or to the right) restricted to t ∈ (a, b) either does
not intersect the graph of x(t) or coincides with this graph.

Exercises

Exercise 1,2,3, 4. Let x(t) be the solution of the equation x′(t) = V (x(t)), where
the function V (x) is given below, satisfying the initial condition x(t0) = x0, where
t0 and x0 are given below, and defined on maximal possible interval (t−, t+). Find
t−, t+ and draw the graph of x(t). Integrals are allowed only if they converge.

1.1. V (x) = sin(ex), t0 = 0, x0 = −1 1.2. V (x) = sin(ex), t0 = 1, x0 = −1
1.3. V (x) = sin(ex), t0 = 1, x0 = 1 1.4. V (x) = sin(ex), t0 = 0, x0 = 2
1.5. V (x) = sin(ex), t0 = −1, x0 = 3 1.6. V (x) = sin(ex), t0 = −1, x0 = 4

—————————————————————
2.1. V (x) = (x− 1)2(x− 2)3(x + 1)4(x + 2)5, t0 = 1, x0 = −2
2.2. V (x) = (x− 1)2(x− 2)3(x + 1)4(x + 2)5, t0 = 1, x0 = −1.5
2.3. V (x) = (x− 1)2(x− 2)3(x + 1)4(x + 2)5, t0 = −1, x0 = −0.5

2.4. V (x) = (x− 1)2(x− 2)3(x + 1)4(x + 2)5, t0 = −1, x0 = 1
—————————————————————————

3.1. V (x) = x
x2+1 , t0 = 0, x0 = −1 3.2. V (x) = x

x2+1 , t0 = 1, x0 = 1

3.3. V (x) = x2

x2+1 , t0 = 0, x0 = −1 3.4. V (x) = x2

x2+1 , t0 = 1, x0 = 1

3.5. V (x) = x3

x2+1 , t0 = 0, x0 = −1 3.6. V (x) = x3

x2+1 , t0 = 1, x0 = 1

3.7. V (x) = x4

x2+1 , t0 = 0, x0 = −1 3.8. V (x) = x4

x2+1 , t0 = 1, x0 = 1

——————————————————————-
4.1. V (x) = 15 + 14 sin5 x, t0 = 0, x0 = 1
4.2. V (x) = (x− 1)(x− 2)(x− 3), t0 = 0, x0 = 0
4.3. V (x) = (x− 1)(x− 2)(x− 3)(x− 4), t0 = 0, x0 = 0
4.4. V (x) = (1− x)(2− x)(3− x), t0 = 0, x0 = 4
4.5. V (x) = x · ln(x2 + 1), t0 = −1, x0 = −1
4.6. V (x) = (x + 5) · ln(x2 + 1), t0 = 1, x0 = 1
4.7. V (x) = (1− x)

√
x2 + 1, t0 = 0, x0 = −1

4.8. V (x) = (2x− 7) · ln(x2 + 1), t0 = −6, x0 = 3

Exercises 5,6,7. Let xa(t) be the solution of the equation x′(t) = V (x(t)) sat-
isfying the initial condition x(0) = a, a ∈ R and defined on maximal possible
interval (t−(a), t+(a)). Give an example of V (x) ∈ C1(R) such that each of the
requirements given below holds.

Exercise 5.

(a) t+(a) = ∞, t−(a) = −∞ for any a ∈ R
(b) limt→∞ xa(t) = ∞ if and only if a > 1
(c) limt→∞ xa(t) = −∞ if and only if a < −1
(d) limt→∞ xa(t) = 0 if and only if a = 0
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Exercise 6.

(a) t+(a) = ∞, t−(a) = −∞ for any a ∈ R
(b) limt→∞ xa(t) 6= +∞ for any a ∈ R
(c) limt→−∞ xa(t) 6= +∞ for any a ∈ R
(d) limt→∞ xa(t) = −∞ if and only if a < 0

Exercise 7.

(a) t+(a) < ∞ if and only if a > 1
(b) t−(a) > −∞ if and only if a < 1

Exercise 8. Find all points of inflection (NIKUDOT PITUL) of the solution x(t)
of the equation x′ = 2+sin2x satisfying the initial condition x(−1) = 3 and defined
for all t ∈ R. Integrals in the answer are OK.

Exercise 9. Let x(t) = t3 + t2 + t + 1 be a solution of an autonomous ODE
x′ = V (x) ∈ C1(R) defined on the time-interval t ∈ (−1, 1). Let x̃(t) be another
solution of the same equation given below. In some of the cases below there is a
contradiction. In which?

(a) x̃(t) = t3 + t2 + t + 5, t ∈ (−1, 1)

(b) x̃(t) = t3 + t, t ∈ (1.2, 2)

(c) x̃(t) = t3 + t, t ∈ (1.5, 2)

(d) x̃(t) = t3 − t, t ∈ (−0.5, 0.5)

(e) x̃(t) = t3 − t− 10, t ∈ (−1, 1)


