LECTURE B
Equations of the form z’ = V(z) (autonomous first order ODEs)
ATTN.: UNDERSTANDING THIS LECTURE REQUIRES DRAWING MANY GRAPHS.

In this section we use the theorems on existence, uniqueness, and prolongation
of solutions (Theorems 1 and 2 from Lecture A) to present complete theory of
equations of the form

(1) ' =V(z), V(z)e C'R).

Definition. A point x* of the x-azes is a singular point of Eq. (1) if V(x*) = 0.
The singular points correspond to solutions z(t) = const.

Proposition 1. A function z(t) = z* is a solution of equation (1) if and only if

x* is a singular point.

ProoFr. This statement is obvious. O

Proposition 2. Any non-constant solution x(t) of (1), defined on any time-interval
(a, B), is a strictly monotonic function. Moreover z'(t) # 0 for any t € (a, 3).

PRrROOF. It suffices to prove that z'(¢) # 0. Assume (to get contradiction) that
2'(tg) = 0, where tg € (o, ). Then V(x(tp)) = 0 which means that xz(¢g) is a
singular point. Therefore we have a constant solution Z(t) = x(t9),t € R (see
Proposition 1). The uniqueness theorem (which holds since V(x) € C') implies
x(t) = &(t) = x(to) for any ¢t € («, 5). This contradicts to the assumption z(t) #
const. (]

Notation. In what follows z(t) is a solution of (1) satisfying the initial condition
(2) z(to) = zo
and defined on maximal possible time-interval ¢ € (¢=,¢).

Proposition 3. The solution z(t) is an increasing function if V(xg) > 0 and a
decreasing function if V(xo) < 0.

Proor. Follows from Proposition 2. O

Now we consider the following(all possible) cases.

CASE A. 1z € (a,b), where a and b are singular points, a < b. There are no
singular points between a and b.

Lemma A1l. In case A one has: a < x(t) <b for any t € (t~,tT).

PRrROOF. Follows from Proposition 1 and the uniqueness theorem. (I

Lemma A2. In case A there are the limits

li li .
Jim z(t) € [a, ], JHm z(t) € [a, b]

ProoF. Follows from Lemma Al and Proposition 3. U

Lemma A3. In case A one has tt = oo, t~ = —o0.
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PRrROOF. Follows from Lemma A2 and the theorem on prolongation of solutions.

O
Lemma A4. In case A the limits in Lemma A2 are as follows:
(a) if V(xg) > 0 then: (al) lim;_.o x(t) = b; (a2) limy__ z(t) = a.
(b) if V(zo) <0 then: (b1) limy_oo x(t) = a; (b2) limg,_o z(t) = b.

PROOF. Let us prove (al) (the proofs of (a2), (bl), (b2) are similar). We know
(Proposition 3, Lemmas A2, A3) that:
(i) z(¢) is an increasing function;
(ii) lim¢— o0 z(t) = B, where g < B < b.
We have to prove that B = b. Note that (i) and (ii) imply that there exists a
sequence t, — oo such that z'(¢;) — 0. 1 2 Substituting these points to the
equation 2’ = V(z) we obtain z’(t;) = V(x(¢x)). Taking the limit as k — oo we
obtain 0 = V(B). Since 29 < B < b, it follows B = b. 3 O

Conclusion for the case A: One has t* = o0, t7 = —o0. If V(z0) > 0 then z(t)
is an increasing function tending to b as t — oo and to a if t — —oo. If V(zg) <0
then z(t) is a decreasing function tending to a as ¢ — oo and to b if t — —o0.

Case B. zyp > a, where a is “the most right* singular point (i.e. there are no
singular points z* > a).

Lemma B1. In case B z(t) > a for any t € (t7,tT), and also the following holds:

(a) If V(xo) > 0 then x(t) is an increasing function, t~ = —oo, lim;__, z(t) = a.

(b) If V(zo) <0 then x(t) is a decreasing function, t = oo, lim;_. z(t) = a.
PRrROOF. Similar to the proofs of Lemmas A1-A4. O

Lemma B2. In case B one has the following:
(a) If V(xp) > 0 then lim;_,+ x(t) = oo.
(b) If V(xo) <0 then lim;_,— x(t) = co.

Remark. Statement (a) holds either for finite t* or for ¥ = co. Statement (b)
holds either for finite ¢~ or for ¢t~ = —o0.

PROOF. Let us proof (a) (the proof of (b) is similar). Assume (to get contra-
diction) that (a) does not hold. Then, since z(t) is an increasing function one has
lim; 4+ xz(t) = A < oo. If tT < oo we have a contradiction with the theorem on
prolongation of solutions. Therefore in the case tT < oo we are done. Consider now
the case tT = co. Since in the case B, subcase (a) one has V(z) > 0 for any x > zo,
there exists mingepy,, 4] V(2) = € > 0. Since our assumptions imply x(t) € [z, 4]
for any t > g, one has 2/(t) = V(z(t)) > € > 0 for any ¢ > to. It follows z(t) — oo
as t — oo: contradiction. g

IExercise: prove this statement.

20ne could think that (i) and (ii) imply that @/(t) — 0 as t — co. This is not so, as I
explained at the lecture.

3This proof was suggested by one of the students (who should let me know his name!). I was
going to present another proof, a bit more complicated.



3

In case B it remains to find ¢ if V(xg) > 0 and ¢~ if V(z¢) < 0. This can
be done using the inverse function ¢(x) (the inverse function exists since z(t) is

monotonic). Since t'(z) = V(la:) one has

B tle) - tlao) =t() ~to = |

Zo

T ds T ds
V(s) V(s)

By Lemmas B1, B2 the inverse function t(z) is defined for z € [a,00). Take the
limit as # — oo. Since in the case V(xg) > 0 one has tT = t(c0) = lim, . t(z)

e t(x):t0+/

Zo

and in the case V(xp) < 0 one has t~ = t(00) = lim,_, o t(z), we obtain:
> dx
4 1% 0 tt=t :
(4) (z0) >0 = 0+/x0 o)
(5) Vieg) <0 = t~ =t +/Oo da
:EO - Zxo V(',L‘).

Whether or not ¢+ < oo in case (4)or t~ > —oo in case (5) depends on the con-
vergence/divergence of the integrals, i.e. on the behavior of the function V(z) as
x — o0. Note that in case (4) the function V(z) is positive for = € [zg,00) and
consequently ¢t > ¢, and in case (5) the function V' (z) is negative for = € [zg, o)
and consequently ¢t~ < tg. *

Conclusion for the case B: z(t) is a monotonic function bounded from below

by a. If V(zg) > 0 then z(t) is an increasing function, ¢t~ = —oo, t+ = (4),
limy, oo 2(t) = a,lim;_+ 2(t) = oco. If V(zg) < 0 then z(t) is a decreasing
function, t*+ = oo, t= = (5), limy—,00 2(t) = a,lim;_,;— z(t) = oco.

Case C. zy < b, where b is “the most left “ singular point (i.e. there are no singular
points z* < b).

Lemma C1. In case C z(t) < b for any t € (t~,tT), and also the following holds:

(a) If V(xg) > 0 then x(t) is an increasing function, t+ = oo, limy . x(t) = b.

(b) If V(zg) < 0 then z(t) is a decreasing function, t— = —oo, limy_._ x(t) =b.
PROOF. Similar to the proofs of Lemmas A1-A4. (]

Lemma C2. In case C one has the following:
(a) If V(xo) > 0 then lim,_,,— x(t) = —oc.
(b) IfV(xo) <0 then lim; .+ 2(t) = —oo.

PROOF. Similar to the proof of Lemma B2. (I

To find ¢~ in the case V() > 0 and ¢ in the case V(zg) < 0 we use the same
way as in case B (the inverse function ¢(z)). The difference with respect to case B
is that now the inverse function ¢(x) is defined for x € (—o0,x¢] and t~ =t~ (—o0)
in the case V(xg) > 0 and t* = tT(—00) in the case V(x¢) < 0 (in the case B we

40f course we know a priori that t+ > tg and t~ < to; this is one of the ways to check that
there is no mistake/misprint in the answer.
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had +oo instead of —o0). Therefore one has to take the limit in (3) as x — —o0
(not as * — oo as in the case B) and we obtain:

R A
(7) V($O)<0:>t+:t0+/zom1%:t°_/zxj(z)'

Whether or not t~ > —oo in case (6) or ¢ < oo in case (7) depends on the
convergence/divergence of the integrals, i.e. on the behavior of the function V()
as x — —oo. Note that in case (6) the function V() is positive for € (—o0, z¢] and
consequently t~ < tg, and in case (7) the function V' (z) is negative for z € (—oo, z¢]
and consequently tT > g (see the footnote on the previous page).

Conclusion for the case C: z(t) is a monotonic function bounded from above by
b. If V(o) > 0 then z(t) is an increasing function, t* = oo, t~ = (6), lim;_ o x(t) =
b,lim; ;- z(t) = —oo. If V(z9) < 0 then z(¢) is a decreasing function, t~ = —oo,
tt = (7), limy_, o z(t) = b, limy_ 4+ z(t) = —oo.

Case D: there are no singular points.

In this case either V(x) > 0 for all z or V(z) < 0 for all . Arguing in the
same way as in cases A - C we obtain:

If V(z) > 0 then z(t) is an increasing function which tends to co as ¢ — oo and
which tends to —oo as ¢ — —oo. In this case

ot > dx iy +/_°° dz . /””0 dz
=10 y =10 =t — .
w V(T) z  V(®) —oo V()

If V(z) < 0 then z(¢) is a decreasing function which tends to —oo as t — oo and
which tends to oo as ¢ — —o0. In this case

t+—t +/—ood7x_t _ xodim t— =t +/oo dx
T V) 0 Vi) " ) Vi)

Note that in case D we might have any of the following cases:

tt < oo, t7 > —oco (example: V(z) = 22 + 1)
tT =00, t~ = —o0 (example: V(z) = Va2 + 1)
tt < oo, t7 = —oo (example: V(z) = e*)
tt =00, 7 > —oco (example: V(x) =e 7).
I conclude this lecture with the following simple, but important theorem.

Proposition 4.  (shift of time). Let x(t) be a solution of an autonomous
ODE z' =V (x) defined on the interval (a,b). Fiz s € R. Then the function

Z(t)=z(t+s), t€(a—sb—2s)
is also a solution of the same equation.

PROOF. #'(t) = La(t+s) =a'(t+s) = V(z(t+s5)) = V((t)). O
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Note that this theorem and the uniqueness theorem (Lecture A, Theorem 1)
imply the following corollary: if V(z) € C*(R) and z(t),#(t) are solutions of the
same equation 2’ = V (z) defined on intervals (a,b), (@,b) then any horizontal shift
of the graph of Z(t) (to the left or to the right) restricted to ¢ € (a,b) either does
not intersect the graph of x(t) or coincides with this graph.

Exercises

Exercise 1,2,3, 4. Let x(¢) be the solution of the equation z'(t) = V(z(t)), where
the function V(z) is given below, satisfying the initial condition (¢¢) = xo, where
to and xg are given below, and defined on maximal possible interval (t~,¢%). Find
t~,tT and draw the graph of z(t). Integrals are allowed only if they converge.

1.1. V(x) = sin(e®), to =0, 2o = —1 1.2. V(x) =sin(e®), to =1, xog= -1
1.3. V(x) =sin(e®), to=1, zog=1 1.4. V(z) =sin(e®), tg =0, xo=2
1.5. V(x) = sin(e®), to = —1, 20 =3 1.6. V(x) =sin(e®), to = -1, zp =4
21. V(z)=(z—1)*(z-2)3xz+1D*(z+2)5% to=1, 2o =2

22. V(z)=(z—1)*(z—-2)3x+1)*(z+2)% to=1, zo=-15

2.3. V(z) = (2 —1)%(x = 2)3(x + D)z + 2)°, to=—1, zg=-0.5

24. V(z)=(x—1)%(x = 2)3(x + D}z +2)°, to=—-1, z0=1

3.1. V(Q?) = IQLH, t() = O, To = -1 3.2. V({)S) = :r;il’ fo = 1, o = 1

3.3. V(z) =54, to=0, zo=—1 34 V(z)= 27, to=1, z9=1

3.5. V(z) = 257, to=0, zo=-1  36. V(z) = £, to=1, z9=1
3.7.V(z) =154, to=0, zo=-1 38 V(r)=:57, to=1, z9=1

4.1. V() =15+ 14sin’ 2, to =0, z9=1

42. V(z)=(z—1)(x —2)(x —3), tg =0, 20 =0

43. V(z)=(z—1)(x —2)(z—3)(x —4), tr =0, 20=0

44. V(z)=1—-2)2—-2)83—2a), tg=0, zg=4

4.5. V(z) =z -In(z? +1), to=-1, z9g=—1

4.6. V(z)=(x+5)-In(z? +1), tr=1, z9=1

47. V(z) =1 —z)vVa?2 +1, tg=0, 20 =-1

48. V(z) =2z —17) - In(z*> 4+ 1), to =—6, zo=3

Exercises 5,6,7. Let z,(¢) be the solution of the equation 2'(t) = V(z(t)) sat-
isfying the initial condition z(0) = a, ¢ € R and defined on maximal possible
interval (t~(a),t"(a)). Give an example of V(z) € C*(R) such that each of the
requirements given below holds.

Exercise 5.

(a) t*(a) = o00,t"(a) = —co for any a € R
(b) limy oo 24(t) = o0 if and only if a > 1
(¢) limy_ oo z4(t) = —o0 if and only if a < —1
(d) lim¢— oo z4(t) =0 if and only if a =0
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Exercise 6.

(a) tT(a) = 0o,t™(a) = —oo for any a € R

(b) limy oo 24(t) # 400 for any a € R

(¢) lims, oo 24(t) # 400 for any a € R

(d) limyoo 24(t) = —o0 if and only if a < 0

Exercise 7.

(a) tT(a) < oo if and only if a > 1

(b) t~(a) > —oo if and only if a < 1

Exercise 8. Find all points of inflection (NIKUDOT PITUL) of the solution z(t)

of the equation 2’ = 2+ sin?z satisfying the initial condition z(—1) = 3 and defined
for all ¢ € R. Integrals in the answer are OK.

Exercise 9. Let z(t) = t3 +¢2 + ¢ + 1 be a solution of an autonomous ODE
2’ = V(z) € C*(R) defined on the time-interval t € (—1,1). Let #(¢) be another
solution of the same equation given below. In some of the cases below there is a
contradiction. In which?

(a) Z(t)=t*+t*+t+5, te(-1,1)
(b) z@t)=t3+t, te(1.2,2)

() Zt)=t3+t, te(1.52)

(d) zt)=t>—t, te(-0.5,0.5)

(e) Z(t)=t3—t—10, te(-1,1)



