LECTURE B

Equations of the form $x^{\prime}=V(x)$ (autonomous first order ODEs)

Attn.: Understanding this lecture requires drawing many graphs.

In this section we use the theorems on existence, uniqueness, and prolongation of solutions (Theorems 1 and 2 from Lecture A) to present complete theory of equations of the form

$$
\begin{equation*}
x^{\prime}=V(x), \quad V(x) \in C^{1}(\mathbb{R}) . \tag{1}
\end{equation*}
$$

Definition. A point x^{*} of the x-axes is a singular point of Eq. (1) if $V\left(x^{*}\right)=0$.
The singular points correspond to solutions $x(t) \equiv$ const.
Proposition 1. A function $x(t) \equiv x^{*}$ is a solution of equation (1) if and only if x^{*} is a singular point.

Proof. This statement is obvious
Proposition 2. Any non-constant solution $x(t)$ of (1), defined on any time-interval (α, β), is a strictly monotonic function. Moreover $x^{\prime}(t) \neq 0$ for any $t \in(\alpha, \beta)$.

Proof. It suffices to prove that $x^{\prime}(t) \neq 0$. Assume (to get contradiction) that $x^{\prime}\left(t_{0}\right)=0$, where $t_{0} \in(\alpha, \beta)$. Then $V\left(x\left(t_{0}\right)\right)=0$ which means that $x\left(t_{0}\right)$ is a singular point. Therefore we have a constant solution $\tilde{x}(t) \equiv x\left(t_{0}\right), t \in \mathbb{R}$ (see Proposition 1). The uniqueness theorem (which holds since $V(x) \in C^{1}$) implies $x(t)=\tilde{x}(t)=x\left(t_{0}\right)$ for any $t \in(\alpha, \beta)$. This contradicts to the assumption $x(t) \not \equiv$ const.

Notation. In what follows $x(t)$ is a solution of (1) satisfying the initial condition

$$
\begin{equation*}
x\left(t_{0}\right)=x_{0} \tag{2}
\end{equation*}
$$

and defined on maximal possible time-interval $t \in\left(t^{-}, t^{+}\right)$.
Proposition 3. The solution $x(t)$ is an increasing function if $V\left(x_{0}\right)>0$ and a decreasing function if $V\left(x_{0}\right)<0$.

Proof. Follows from Proposition 2.
Now we consider the following(all possible) cases.
CASE A. $\quad x_{0} \in(a, b)$, where a and b are singular points, $a<b$. There are no singular points between a and b.

Lemma A1. In case \mathbf{A} one has: $a<x(t)<b$ for any $t \in\left(t^{-}, t^{+}\right)$.
Proof. Follows from Proposition 1 and the uniqueness theorem.

Lemma A2. In case \mathbf{A} there are the limits

$$
\lim _{t \rightarrow t^{+}} x(t) \in[a, b], \quad \lim _{t \rightarrow t^{-}} x(t) \in[a, b] .
$$

Proof. Follows from Lemma A1 and Proposition 3.
Lemma A3. In case A one has $t^{+}=\infty, t^{-}=-\infty$.

Proof. Follows from Lemma A2 and the theorem on prolongation of solutions.

Lemma A4. In case A the limits in Lemma A2 are as follows:
(a) if $V\left(x_{0}\right)>0$ then: (a1) $\lim _{t \rightarrow \infty} x(t)=b$; (a2) $\lim _{t \rightarrow-\infty} x(t)=a$.
(b) if $V\left(x_{0}\right)<0$ then: (b1) $\lim _{t \rightarrow \infty} x(t)=a$; (b2) $\lim _{t \rightarrow-\infty} x(t)=b$.

Proof. Let us prove (a1) (the proofs of (a2), (b1), (b2) are similar). We know (Proposition 3, Lemmas A2, A3) that:
(i) $x(t)$ is an increasing function;
(ii) $\lim _{t \rightarrow \infty} x(t)=B$, where $x_{0}<B \leq b$.

We have to prove that $B=b$. Note that (i) and (ii) imply that there exists a sequence $t_{k} \rightarrow \infty$ such that $x^{\prime}\left(t_{k}\right) \rightarrow 0 .{ }^{1} 2^{2}$ Substituting these points to the equation $x^{\prime}=V(x)$ we obtain $x^{\prime}\left(t_{k}\right)=V\left(x\left(t_{k}\right)\right)$. Taking the limit as $k \rightarrow \infty$ we obtain $0=V(B)$. Since $x_{0}<B \leq b$, it follows $B=b$. ${ }^{3}$
Conclusion for the case A: One has $t^{+}=\infty, t^{-}=-\infty$. If $V\left(x_{0}\right)>0$ then $x(t)$ is an increasing function tending to b as $t \rightarrow \infty$ and to a if $t \rightarrow-\infty$. If $V\left(x_{0}\right)<0$ then $x(t)$ is a decreasing function tending to a as $t \rightarrow \infty$ and to b if $t \rightarrow-\infty$.

Case B. $x_{0}>a$, where a is "the most right" singular point (i.e. there are no singular points $\left.x^{*}>a\right)$.
Lemma B1. In case $\mathbf{B} x(t)>a$ for any $t \in\left(t^{-}, t^{+}\right)$, and also the following holds:
(a) If $V\left(x_{0}\right)>0$ then $x(t)$ is an increasing function, $t^{-}=-\infty, \lim _{t \rightarrow-\infty} x(t)=a$.
(b) If $V\left(x_{0}\right)<0$ then $x(t)$ is a decreasing function, $t^{+}=\infty, \lim _{t \rightarrow \infty} x(t)=a$.

Proof. Similar to the proofs of Lemmas A1-A4.
Lemma B2. In case \mathbf{B} one has the following:
(a) If $V\left(x_{0}\right)>0$ then $\lim _{t \rightarrow t^{+}} x(t)=\infty$.
(b) If $V\left(x_{0}\right)<0$ then $\lim _{t \rightarrow t^{-}} x(t)=\infty$.

Remark. Statement (a) holds either for finite t^{+}or for $t^{+}=\infty$. Statement (b) holds either for finite t^{-}or for $t^{-}=-\infty$.

Proof. Let us proof (a) (the proof of (b) is similar). Assume (to get contradiction) that (a) does not hold. Then, since $x(t)$ is an increasing function one has $\lim _{t \rightarrow t^{+}} x(t)=A<\infty$. If $t^{+}<\infty$ we have a contradiction with the theorem on prolongation of solutions. Therefore in the case $t^{+}<\infty$ we are done. Consider now the case $t^{+}=\infty$. Since in the case \mathbf{B}, subcase (a) one has $V(x)>0$ for any $x \geq x_{0}$, there exists $\min _{x \in\left[x_{0}, A\right]} V(x)=\epsilon>0$. Since our assumptions imply $x(t) \in\left[x_{0}, A\right]$ for any $t \geq t_{0}$, one has $x^{\prime}(t)=V(x(t)) \geq \epsilon>0$ for any $t \geq t_{0}$. It follows $x(t) \rightarrow \infty$ as $t \rightarrow \infty$: contradiction.

[^0]In case \mathbf{B} it remains to find t^{+}if $V\left(x_{0}\right)>0$ and t^{-}if $V\left(x_{0}\right)<0$. This can be done using the inverse function $t(x)$ (the inverse function exists since $x(t)$ is monotonic). Since $t^{\prime}(x)=\frac{1}{V(x)}$ one has

$$
\begin{equation*}
t(x)-t\left(x_{0}\right)=t(x)-t_{0}=\int_{x_{0}}^{x} \frac{d s}{V(s)} \Longrightarrow t(x)=t_{0}+\int_{x_{0}}^{x} \frac{d s}{V(s)} \tag{3}
\end{equation*}
$$

By Lemmas B1, B2 the inverse function $t(x)$ is defined for $x \in[a, \infty)$. Take the limit as $x \rightarrow \infty$. Since in the case $V\left(x_{0}\right)>0$ one has $t^{+}=t(\infty)=\lim _{x \rightarrow \infty} t(x)$ and in the case $V\left(x_{0}\right)<0$ one has $t^{-}=t(\infty)=\lim _{x \rightarrow \infty} t(x)$, we obtain:

$$
\begin{align*}
& V\left(x_{0}\right)>0 \Longrightarrow t^{+}=t_{0}+\int_{x_{0}}^{\infty} \frac{d x}{V(x)} \tag{4}\\
& V\left(x_{0}\right)<0 \Longrightarrow t^{-}=t_{0}+\int_{x_{0}}^{\infty} \frac{d x}{V(x)} \tag{5}
\end{align*}
$$

Whether or not $t^{+}<\infty$ in case (4)or $t^{-}>-\infty$ in case (5) depends on the convergence/divergence of the integrals, i.e. on the behavior of the function $V(x)$ as $x \rightarrow \infty$. Note that in case (4) the function $V(x)$ is positive for $x \in\left[x_{0}, \infty\right)$ and consequently $t^{+}>t_{0}$, and in case (5) the function $V(x)$ is negative for $x \in\left[x_{0}, \infty\right)$ and consequently $t^{-}<t_{0} .{ }^{4}$

Conclusion for the case B: $x(t)$ is a monotonic function bounded from below by a. If $V\left(x_{0}\right)>0$ then $x(t)$ is an increasing function, $t^{-}=-\infty, t^{+}=(4)$, $\lim _{t \rightarrow-\infty} x(t)=a, \lim _{t \rightarrow t^{+}} x(t)=\infty$. If $V\left(x_{0}\right)<0$ then $x(t)$ is a decreasing function, $t^{+}=\infty, t^{-}=(5), \lim _{t \rightarrow \infty} x(t)=a, \lim _{t \rightarrow t^{-}} x(t)=\infty$.

Case C. $x_{0}<b$, where b is "the most left" singular point (i.e. there are no singular points $x^{*}<b$).
Lemma C1. In case $\mathbf{C} x(t)<b$ for any $t \in\left(t^{-}, t^{+}\right)$, and also the following holds:
(a) If $V\left(x_{0}\right)>0$ then $x(t)$ is an increasing function, $t^{+}=\infty, \lim _{t \rightarrow \infty} x(t)=b$.
(b) If $V\left(x_{0}\right)<0$ then $x(t)$ is a decreasing function, $t^{-}=-\infty, \lim _{t \rightarrow-\infty} x(t)=b$. Proof. Similar to the proofs of Lemmas A1-A4.

Lemma C2. In case \mathbf{C} one has the following:
(a) If $V\left(x_{0}\right)>0$ then $\lim _{t \rightarrow t^{-}} x(t)=-\infty$.
(b) If $V\left(x_{0}\right)<0$ then $\lim _{t \rightarrow t^{+}} x(t)=-\infty$.

Proof. Similar to the proof of Lemma B2.
To find t^{-}in the case $V\left(x_{0}\right)>0$ and t^{+}in the case $V\left(x_{0}\right)<0$ we use the same way as in case \mathbf{B} (the inverse function $t(x)$). The difference with respect to case \mathbf{B} is that now the inverse function $t(x)$ is defined for $x \in\left(-\infty, x_{0}\right]$ and $t^{-}=t^{-}(-\infty)$ in the case $V\left(x_{0}\right)>0$ and $t^{+}=t^{+}(-\infty)$ in the case $V\left(x_{0}\right)<0$ (in the case \mathbf{B} we

[^1]had $+\infty$ instead of $-\infty$). Therefore one has to take the limit in (3) as $x \rightarrow-\infty$ (not as $x \rightarrow \infty$ as in the case \mathbf{B}) and we obtain:
\[

$$
\begin{align*}
& V\left(x_{0}\right)>0 \Longrightarrow t^{-}=t_{0}+\int_{x_{0}}^{-\infty} \frac{d x}{V(x)}=t_{0}-\int_{-\infty}^{x_{0}} \frac{d x}{V(x)} \tag{6}\\
& V\left(x_{0}\right)<0 \Longrightarrow t^{+}=t_{0}+\int_{x_{0}}^{-\infty} \frac{d x}{V(x)}=t_{0}-\int_{-\infty}^{x_{0}} \frac{d x}{V(x)} \tag{7}
\end{align*}
$$
\]

Whether or not $t^{-}>-\infty$ in case (6) or $t^{+}<\infty$ in case (7) depends on the convergence/divergence of the integrals, i.e. on the behavior of the function $V(x)$ as $x \rightarrow-\infty$. Note that in case (6) the function $V(x)$ is positive for $x \in\left(-\infty, x_{0}\right]$ and consequently $t^{-}<t_{0}$, and in case (7) the function $V(x)$ is negative for $x \in\left(-\infty, x_{0}\right.$] and consequently $t^{+}>t_{0}$ (see the footnote on the previous page).

Conclusion for the case C: $x(t)$ is a monotonic function bounded from above by b. If $V\left(x_{0}\right)>0$ then $x(t)$ is an increasing function, $t^{+}=\infty, t^{-}=(6), \lim _{t \rightarrow \infty} x(t)=$ $b, \lim _{t \rightarrow t^{-}} x(t)=-\infty$. If $V\left(x_{0}\right)<0$ then $x(t)$ is a decreasing function, $t^{-}=-\infty$, $t^{+}=(7), \lim _{t \rightarrow-\infty} x(t)=b, \lim _{t \rightarrow t^{+}} x(t)=-\infty$.

Case D: there are no singular points.
In this case either $V(x)>0$ for all x or $V(x)<0$ for all x. Arguing in the same way as in cases A-C we obtain:

If $V(x)>0$ then $x(t)$ is an increasing function which tends to ∞ as $t \rightarrow \infty$ and which tends to $-\infty$ as $t \rightarrow-\infty$. In this case

$$
t^{+}=t_{0}+\int_{x_{0}}^{\infty} \frac{d x}{V(x)}, \quad t^{-}=t_{0}+\int_{x_{0}}^{-\infty} \frac{d x}{V(x)}=t_{0}-\int_{-\infty}^{x_{0}} \frac{d x}{V(x)}
$$

If $V(x)<0$ then $x(t)$ is a decreasing function which tends to $-\infty$ as $t \rightarrow \infty$ and which tends to ∞ as $t \rightarrow-\infty$. In this case

$$
t^{+}=t_{0}+\int_{x_{0}}^{-\infty} \frac{d x}{V(x)}=t_{0}-\int_{-\infty}^{x_{0}} \frac{d x}{V(x)}, \quad t^{-}=t_{0}+\int_{x_{0}}^{\infty} \frac{d x}{V(x)} .
$$

Note that in case \mathbf{D} we might have any of the following cases:

$$
\begin{aligned}
& t^{+}<\infty, t^{-}>-\infty\left(\text { example: } V(x)=x^{2}+1\right) \\
& \left.t^{+}=\infty, t^{-}=-\infty \text { (example: } V(x)=\sqrt{x^{2}+1}\right) \\
& \left.t^{+}<\infty, t^{-}=-\infty \text { (example: } V(x)=e^{x}\right) \\
& \left.t^{+}=\infty, t^{-}>-\infty \text { (example: } V(x)=e^{-x}\right)
\end{aligned}
$$

I conclude this lecture with the following simple, but important theorem.
Proposition 4. (shift of time). Let $x(t)$ be a solution of an autonomous $O D E x^{\prime}=V(x)$ defined on the interval (a, b). Fix $s \in \mathbb{R}$. Then the function

$$
\tilde{x}(t)=x(t+s), \quad t \in(a-s, b-s)
$$

is also a solution of the same equation.
Proof. $\tilde{x}^{\prime}(t)=\frac{d}{d t} x(t+s)=x^{\prime}(t+s)=V(x(t+s))=V(\tilde{x}(t))$.

Note that this theorem and the uniqueness theorem (Lecture A, Theorem 1) imply the following corollary: if $V(x) \in C^{1}(\mathbb{R})$ and $x(t), \tilde{x}(t)$ are solutions of the same equation $x^{\prime}=V(x)$ defined on intervals $(a, b),(\tilde{a}, \tilde{b})$ then any horizontal shift of the graph of $\tilde{x}(t)$ (to the left or to the right) restricted to $t \in(a, b)$ either does not intersect the graph of $x(t)$ or coincides with this graph.

Exercises

Exercise 1,2,3, 4. Let $x(t)$ be the solution of the equation $x^{\prime}(t)=V(x(t))$, where the function $V(x)$ is given below, satisfying the initial condition $x\left(t_{0}\right)=x_{0}$, where t_{0} and x_{0} are given below, and defined on maximal possible interval $\left(t^{-}, t^{+}\right)$. Find t^{-}, t^{+}and draw the graph of $x(t)$. Integrals are allowed only if they converge.
1.1. $V(x)=\sin \left(e^{x}\right), t_{0}=0, x_{0}=-1$
1.2. $V(x)=\sin \left(e^{x}\right), t_{0}=1, x_{0}=-1$
1.3. $V(x)=\sin \left(e^{x}\right), t_{0}=1, x_{0}=1$
1.4. $V(x)=\sin \left(e^{x}\right), t_{0}=0, x_{0}=2$
1.5. $V(x)=\sin \left(e^{x}\right), t_{0}=-1, x_{0}=3$
1.6. $V(x)=\sin \left(e^{x}\right), t_{0}=-1, x_{0}=4$
2.1. $V(x)=(x-1)^{2}(x-2)^{3}(x+1)^{4}(x+2)^{5}, t_{0}=1, x_{0}=-2$
2.2. $V(x)=(x-1)^{2}(x-2)^{3}(x+1)^{4}(x+2)^{5}, t_{0}=1, x_{0}=-1.5$
2.3. $V(x)=(x-1)^{2}(x-2)^{3}(x+1)^{4}(x+2)^{5}, t_{0}=-1, x_{0}=-0.5$
2.4. $V(x)=(x-1)^{2}(x-2)^{3}(x+1)^{4}(x+2)^{5}, t_{0}=-1, x_{0}=1$
3.1. $V(x)=\frac{x}{x^{2}+1}, t_{0}=0, x_{0}=-1$
3.2. $V(x)=\frac{x}{x^{2}+1}, t_{0}=1, x_{0}=1$
3.3. $V(x)=\frac{x^{2}}{x^{2}+1}, t_{0}=0, x_{0}=-1$
3.4. $V(x)=\frac{x^{2}}{x^{2}+1}, t_{0}=1, x_{0}=1$
3.5. $V(x)=\frac{x^{3}}{x^{2}+1}, t_{0}=0, x_{0}=-1$
3.6. $V(x)=\frac{x^{3}}{x^{2}+1}, t_{0}=1, x_{0}=1$
3.7. $V(x)=\frac{x^{4}}{x^{2}+1}, t_{0}=0, x_{0}=-1$
3.8. $V(x)=\frac{x^{4}}{x^{2}+1}, t_{0}=1, x_{0}=1$
4.1. $V(x)=15+14 \sin ^{5} x, t_{0}=0, x_{0}=1$
4.2. $V(x)=(x-1)(x-2)(x-3), t_{0}=0, x_{0}=0$
4.3. $V(x)=(x-1)(x-2)(x-3)(x-4), t_{0}=0, x_{0}=0$
4.4. $V(x)=(1-x)(2-x)(3-x), t_{0}=0, x_{0}=4$
4.5. $V(x)=x \cdot \ln \left(x^{2}+1\right), t_{0}=-1, x_{0}=-1$
4.6. $V(x)=(x+5) \cdot \ln \left(x^{2}+1\right), t_{0}=1, x_{0}=1$
4.7. $V(x)=(1-x) \sqrt{x^{2}+1}, t_{0}=0, x_{0}=-1$
4.8. $V(x)=(2 x-7) \cdot \ln \left(x^{2}+1\right), t_{0}=-6, x_{0}=3$

Exercises 5,6,7. Let $x_{a}(t)$ be the solution of the equation $x^{\prime}(t)=V(x(t))$ satisfying the initial condition $x(0)=a, a \in \mathbb{R}$ and defined on maximal possible interval $\left(t^{-}(a), t^{+}(a)\right)$. Give an example of $V(x) \in C^{1}(\mathbb{R})$ such that each of the requirements given below holds.

Exercise 5.

(a) $t^{+}(a)=\infty, t^{-}(a)=-\infty$ for any $a \in \mathbb{R}$
(b) $\lim _{t \rightarrow \infty} x_{a}(t)=\infty$ if and only if $a>1$
(c) $\lim _{t \rightarrow \infty} x_{a}(t)=-\infty$ if and only if $a<-1$
(d) $\lim _{t \rightarrow \infty} x_{a}(t)=0$ if and only if $a=0$

Exercise 6.

(a) $t^{+}(a)=\infty, t^{-}(a)=-\infty$ for any $a \in \mathbb{R}$
(b) $\lim _{t \rightarrow \infty} x_{a}(t) \neq+\infty$ for any $a \in \mathbb{R}$
(c) $\lim _{t \rightarrow-\infty} x_{a}(t) \neq+\infty$ for any $a \in \mathbb{R}$
(d) $\lim _{t \rightarrow \infty} x_{a}(t)=-\infty$ if and only if $a<0$

Exercise 7.

(a) $t^{+}(a)<\infty$ if and only if $a>1$
(b) $t^{-}(a)>-\infty$ if and only if $a<1$

Exercise 8. Find all points of inflection (NIKUDOT PITUL) of the solution $x(t)$ of the equation $x^{\prime}=2+\sin ^{2} x$ satisfying the initial condition $x(-1)=3$ and defined for all $t \in \mathbb{R}$. Integrals in the answer are OK.

Exercise 9. Let $x(t)=t^{3}+t^{2}+t+1$ be a solution of an autonomous ODE $x^{\prime}=V(x) \in C^{1}(\mathbb{R})$ defined on the time-interval $t \in(-1,1)$. Let $\tilde{x}(t)$ be another solution of the same equation given below. In some of the cases below there is a contradiction. In which?
(a) $\tilde{x}(t)=t^{3}+t^{2}+t+5, \quad t \in(-1,1)$
(b) $\tilde{x}(t)=t^{3}+t, \quad t \in(1.2,2)$
(c) $\tilde{x}(t)=t^{3}+t, \quad t \in(1.5,2)$
(d) $\tilde{x}(t)=t^{3}-t, \quad t \in(-0.5,0.5)$
(e) $\tilde{x}(t)=t^{3}-t-10, \quad t \in(-1,1)$

[^0]: ${ }^{1}$ Exercise: prove this statement.
 ${ }^{2}$ One could think that (i) and (ii) imply that $x^{\prime}(t) \rightarrow 0$ as $t \rightarrow \infty$. This is not so, as I explained at the lecture.
 ${ }^{3}$ This proof was suggested by one of the students (who should let me know his name!). I was going to present another proof, a bit more complicated.

[^1]: ${ }^{4}$ Of course we know a priori that $t^{+}>t_{0}$ and $t^{-}<t_{0}$; this is one of the ways to check that there is no mistake/misprint in the answer.

