
LECTURE C

Non-autonomous first order ODEs

We will study the following non-autonomous first order ODEs:

Section 1: linear homogeneous ODEs: x′ = f(t)x

Section 2: linear non-homogeneous ODEs: x′ = f(t)x + g(t)

Sections 3 and 4: equations with separable variables: x′ = f(t)g(x)

Sections 5,6,7,8 : certain ODEs which can be reduced to linear ODES or ODEs
with separable variables by a certain SUBSTITUTION

1. Linear homogeneous equations:

(1) x′ = f(t)x, f(t) ∈ C0(R).

Theorem 1. Fix any initial condition x(t0) = x0. Equation (1) has a solution
x(t) satisfying this initial condition and defined for all t. This solution is unique,
and it is as follows:

(2) x(t) = x0 · exp
( ∫ t

t0

f(s)ds

)
.

Proof. It is clear that (2) satisfies (1) and satisfies x(t0) = x0. The uniqueness
holds since f(t) ∈ C0(R): due to this condition the assumptions of the existence
and uniqueness theorem (Lecture Notes, Lecture A, Theorem 1) hold. ¤

Theorem 2. Fix any function F (t) such that F ′(t) = f(t). The general
solution of (1) (i.e. the set of all solutions defined for all t) is

(3) C · exp
(
F (t)

)
, C ∈ R.

Proof. It is clear that (3) is a solution of (1) for any C ∈ R. To prove the
theorem we have to show that any fixed solution x(t) has form (3). Let C1 = x(0).
By Theorem 1 we have x(t) = C1 · exp

( ∫ t

0
f(s)ds

)
. The functions

∫ t

0
f(s)ds and

F (t) have the same derivative f(t). Therefore
∫ t

0
f(s)ds = F (t) + C2 for some C2.

It follows that x(t) has form (3) with C = C1e
C2 . ¤

2. Linear non-homogeneous equations:

(4) x′ = f(t)x + g(t), f(t), g(t) ∈ C0(R).

Theorem 3 (variation of constant). Fix any initial condition x(t0) = x0.
Equation (4) has a solution x(t) satisfying this initial condition and defined for all
t. This solution is unique. Fix any function F (t) such that F ′(t) = f(t). Then x(t)
has the form

(5) C(t) · exp
(
F (t)

)
,

where C(t) is a certain function.
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This theorem is called “variation of constant“ since (5) differs from the gen-
eral solution (3) of the corresponding homogeneous equation (1) by replacing the
constant C by a function C(t).

Proof. Since f(t), g(t) ∈ C0(R) then the equation satisfies the assumptions
of the existence and uniqueness theorem (Lecture Notes, Lecture A, Theorem 1).
Therefore if there exists a solution defined for all t and satisfying x(t0) = x0, it is
unique. This reduces the theorem to the following claim: there exists a function
C(t) ∈ C1(R) such that (5) is a solution of (4) satisfying x(t0) = x0.

To prove this claim we substitute (5) to (4). We obtain:

C ′(t) · exp
(
F (t)

)
+ C(t) ·

(
exp

(
F (t)

))′
= f(t)C(t)(exp

(
F (t)

)
+ g(t).

Since exp
(
F (t)

)
is a solution of the homogeneous equation (1), one has

(
exp

(
F (t)

))′
=

f(t)C(t)(exp
(
F (t)

)
and this equation takes the form

(6) C ′(t) = exp
(− F (t)

)
g(t).

Fix any function H(t) such that H ′(t) = exp
(− F (t)

)
g(t). Then C(t) = H(t) + D

is a solution of (6) for any constant D. We have proved that for any D ∈ R the
function

(H(t) + D) · exp
(
F (t)

)
, D ∈ R.

is a solution of equation (4). It remains to find D such that this function satisfies
the initial condition x(t0) = x0. Substituting t0 we obtain the following equation
for D:

(7) (H(t0) + D) · exp
(
F (t0)

)
= x0.

Obviously this equation has a solution D ∈ R. ¤

Note that the solution of (4) satisfying x(t0) = x0 can be given by an explicit
formulae (involving integrals). To obtain this formula take in the proof above

F (t) =
∫ t

t0

f(s)ds.

H(t) =
∫ t

t0

exp
(− F (s)

)
g(s)ds.

Then F (t0) = H(t0) = 0 and equation (7) reduces to D = x0. We obtain:

x(t) =
(

x0 +
∫ t

t0

exp
(
−

∫ s

t0

f(r)dr
)
g(s)ds

)
· exp

( ∫ t

t0

f(s)ds
))

.

3. Equations with separable variables:

(8) x′ = f(t) · g(x), f(t) ∈ C0(I), f(t) 6≡ 0, g(x) ∈ C1(Ĩ).

Here I and Ĩ are open intervals in the t-axes and the x-axes (including the case
that I and/or Ĩ is the whole R).

Like for autonomous ODEs (see Lecture Notes, Lecture B) for such equations
it is worth to define singular points as follows.
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Definition. A singular point of (8) is a point x∗ in the x-axes such that
g(x∗) = 0.

The singular points correspond to constant solutions: if x∗ is a singular point
then obviously x(t) ≡ x∗ is a solution of (8). The converse is true unless f(t) ≡ 0
on the interval of definition of a solution x(t): if x(t) ≡ x∗ is a solution defined on
(a, b) and f(t) 6≡ 0 on (a, b) then x∗ is a singular point.

Theorem 4. Let x(t) be the solution of (8) satisfying the initial conditions
x(t0) = x0, where x0 is not a singular point, and defined for t ∈ (a, b). Then

1. One has g(x(t)) 6= 0 for any t ∈ (a, b).

2. For any t ∈ (a, b) and for any s ∈ [x0, x(t)] one has g(s) 6= 0.

3. One has

(9)
∫ x(t)

x0

ds

g(s)
=

∫ t

t0

f(s)ds, t ∈ (a, b).

Remark. The second statement implies that the integral in the left hand side
of (9) is well-defined.

Theorem 5. Let x(t) be a function defined for t ∈ (a, b) and such that g(x(t)) 6=
0, t ∈ (a, b). If (9) holds then x(t) is a solution of (8) satisfying x(t0) = x0.

Proof of Theorem 4. To prove the first statement assume (to get contra-
diction) that g(x(t∗)) = 0 for some t∗ ∈ (a, b). Let x∗ = x(t∗). Then x∗ is a
singular point and there is a constant solution x̃(t) ≡ x∗. Now we use the unique-
ness theorem (it holds due to the assumptions f(t) ∈ C0(R), g(x) ∈ C1(R)). Since
x(t∗) = x̃(t∗) = x∗, one has x(t) = x̃(t) = x∗ for any t ∈ (a, b). It follows that
x0 = x(t0) = x∗ and then x0 is a singular point. This contradicts to the assumption
of the theorem.

The second statement is a corollary of the first one and the continuity of x(t).

Now we prove the third statement. The first two statements imply that 1
g(s) ∈

C1[x0, x(t)] for any t ∈ (a, b). It follows that the function A(t) =
∫ x(t)

x0

ds
g(s) is

differentiable for t ∈ (a, b). The function B(t) =
∫ t

t0
f(s)ds is also differentiable

for t ∈ (a, b). We have to prove that A(t) ≡ B(t). Note that A(t0) = B(t0) = 0.
Therefore it suffices to prove that A′(t) ≡ B′(t). One has

(10) B′(t) = f(t), A′(t) =
x′(t)

g(x(t))
.

Since x(t) is a solution of (8) then A′(t) = f(t) and we are done.

Proof of Theorem 5. The assumption g(x(t)) 6= 0, t ∈ (a, b) implies that
g(s) 6= 0 for any s ∈ [x0, x(t)], t ∈ (a, b). Therefore 1

g(s) is a differentiable function

for s ∈ [x0, x(t)] and then the function A(t) =
∫ x(t)

x0

ds
g(s) is differentiable for t ∈

(a, b). The function B(t) =
∫ t

t0
f(s)ds is also differentiable for t ∈ (a, b). We have

A(t) ≡ B(t). Then A′(t) ≡ B′(t). By (10) one has x′(t)
g(x(t)) = f(t) and it follows that

x(t) is a solution of (8).
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It remains to show that x(t0) = x0. Substituting t0 to (9) we obtain
∫ x(t0)

x0

ds
g(s) =

0. Since 1
/
g(s) is a non-vanishing function on the interval [x0, x(t0)], it follows that

x(t0) = x0.

4. Qualitative analysis of equations (8)

I mean drawing the graph of the solution x(t) of (8) satisfying a fixed initial con-
dition x(t0) = x0 and determination of the maximal possible time-interval (t−, t+)
on which x(t) is defined. In many cases this does not require taking integrals in
(9). I will present several examples. In each of them we will use the uniqueness
theorem and theorem on prolongation of solutions (Lecture Notes, Lecture A, The-
orems 1,2). Our arguments will be similar to those in Lecture B. On certain steps
of the qualitative analysis we will also use (9), but we will not take integrals in this
relation.

Example 1.

x′ = (x2 − 1) · (t3 + t2 − 2t), x(0) = 0.

Let x(t) be solution of this equation defined on maximal possible time-interval
(t−, t+).

Claim 1.1. One has x(t) 6= ±1 for any t ∈ (t−, t+).

Proof. Follows from the uniqueness theorem and the fact that ±1 are singular
points (and consequently there are constant solutions x̃(t) ≡ 1, x̂(t) ≡ −1).

Claim 1.2. One has x(t) ∈ (−1, 1) for any t ∈ (t−, t+).

Proof. Follows from Claim 1.1 and the initial condition x(0) = 0.

Claim 1.3. The solution x(t) is an increasing function at any point t ∈
((−∞,−2)∪ (0, 1))∩ (t−, t+) and a decreasing function at any point t ∈ ((−2, 0)∪
(1,∞)) ∩ (t−, t+).

Proof. Follows from Claim 1.2 (implying that x2(t)−1 < 0 for any t ∈ (t−, t+)
and the fact that the polynomial t3 + t2 − 2t is positive when t ∈ (−2, 0) ∪ (1,∞)
and negative when t ∈ ((−∞,−2) ∪ (0, 1).

Claim 1.4. If t+ < ∞ then there exists the limit limt→t+ x(t) ∈ [−1, 1]. If
t− > −∞ then there exists the limit limt→t− x(t) ∈ [−1, 1].

Proof. Easily follows from claims 1.3 and 1.2 (exercise on hedva: prove it).

Claim 1.5. t+ = ∞ and t− = −∞.

Proof. Follows from Claim 1.4 and the theorem on prolongation of solutions.

Claim 1.5. There exist

lim
t→∞

x(t) = B ∈ (1,−1], lim
t→−∞

x(t) = A ∈ (1,−1].

Proof. Follows from Claims 1.3 and 1.2 (we also use, of course, Claim 1.5).
Exercise: explain why A 6= 1, B 6= 1.

Now we will find A and B. We use Theorem 4. By this theorem

(11)
∫ x(t)

0

ds

s2 − 1
=

∫ t

0

(s3 + s2 − 2s)ds.



4. QUALITATIVE ANALYSIS OF EQUATIONS (??) 5

Take the limits in this relation as t →∞ and as t → −∞. We obtain∫ B

0

dx

x2 − 1
=

∫ ∞

0

(t3 + t2 − 2t)dt;

∫ A

0

dx

x2 − 1
=

∫ −∞

0

(t3 + t2 − 2t)dt.

Since
∫∞
0

(t3 + t2− 2t)dt =
∫ −∞
0

(t3 + t2− 2t)dt = ∞ and A,B ∈ (1,−1] (recall that
A,B 6= 1), it follows:

Claim 1.6. A = B = −1.

Example 2.

x′ =
1− x2

t2 + t + 2
, x(0) = 0.

Let x(t) be solution of this equation defined on maximal possible time-interval
(t−, t+).

Claim 2.1.
t+ = ∞, t− = −∞.

x(t) is an increasing function (for any t ∈ R).

limt→∞ x(t) = B ∈ (−1, 1], limt→−∞ x(t) = A ∈ [−1, 1)
(note that B 6= −1 and A 6= 1)

Proof. Similar to claims 1.1 - 1.5 of Example 1.

To find A and B use Theorem 4:∫ x(t)

0

ds

1− s2
=

∫ t

0

ds

s2 + s + 2
.

Taking the limit as t → ±∞ we obtain
∫ B

0

dx

1− x2
=

∫ ∞

0

dt

t2 + t + 2
= r1 (finite number)

∫ A

0

dx

1− x2
=

∫ −∞

0

dt

t2 + t + 2
= r2 (finite number)

and it follows that B < 1 and A > −1.

Example 3.
x′ = (x2 − 1)(t2 − 1), x(0) = 2

Arguing as in Example 1 we obtain:

x(t) > 1 for any t ∈ (t−, t+);

x(t) is increasing for t ∈ ((−∞,−1) ∪ (1,∞)) ∩ (t−, t+) and decreasing for
t ∈ (−1, 1) ∩ (t−, t+);

t− = −∞;

there exists limt→−∞ x(t) = A ≥ 1.

By Theorem 4

(12)
∫ x(t)

2

ds

s2 − 1
=

∫ t

0

(s2 − 1)ds

and taking the limit as t → −∞ we obtain
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A = 1.

We also obtain, arguing like in Example 1:

there exists limt→t+ x(t) = B, 1 < B ≤ ∞.

In this example for finding t+ it is not enough to use the uniqueness theorem
and the theorem on prolongation of solutions. One also should use Theorem 4.
Taking the limit in (12) as t → t+ we obtain

∫ B

2

dx

x2 − 1
=

∫ t+

0

(s2 − 1)ds.

The integral in the left hand side is a finite number, even if B = ∞. Therefore the
integral in the right hand side is also a finite number. We obtain:

Claim: t+ < ∞.

Now we use the theorem on prolongation of solutions. Since t+ < ∞, it implies:

Claim: B = ∞.

Now t+ can be found from the equation
∫ ∞

2

dx

x2 − 1
=

∫ t+

0

(s2 − 1)ds.

Example 4.

x′ =
x2 + 1
1− t2

, x(0) = 0

Note that unlike the previous examples, this equation is defined in the domain
t ∈ (−1, 1), x ∈ R (not in the whole plane R2). Therefore A PRIORI t± ∈ [−1, 1].

In this example there are no singular points. The equation implies that x(t)
increases for all t ∈ (t−, t+). Therefore there

lim
t→t+

x(t) = B ∈ (0,∞], lim
t→t−

x(t) = A ∈ [−∞, 0].

At this moment we do not know if t± = ±1, and we do not know if A,B are finite or
not. The only fact we know (without using Theorem 4) is as follows: if t+ < 1 then
B = ∞ and if t− > 1 then A = −∞. This follows from the theorem on prolongation
of solutions for a domain with a boundary (see Lecture Notes, Lecture A, Th. 3).

To get more information we use Theorem 4. It gives
∫ x(t)

0

ds

s2 + 1
=

∫ t

0

ds

1− s2
.

Taking the limits as t → t+ and as t → t− we obtain
∫ B

0

dx

x2 + 1
=

∫ t+

0

dt

1− t2
;

∫ A

0

dx

x2 + 1
=

∫ t−

0

dt

1− t2
.

The integrals in the left hand sides of these relations are finite for any A,B including
A,B = ±∞. It follows that the integrals in the right hand side of these relations
are also finite. This is possible only if t+ < 1 and t− > −1.

We have proved that t+ < 1 and t− > −1. Now the theorem on prolongation
of solutions for a domain with a boundary (see Lecture Notes, Lecture A, Theorem
3) implies:
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B = ∞, A = −∞.

Consequently t± satisfy the equations
∫ ∞

0

dx

x2 + 1
=

∫ t+

0

dt

1− t2
;

∫ −∞

0

dx

x2 + 1
=

∫ t−

0

dt

1− t2
.

Remark. In the qualitative analysis like in the given examples it is worth to
use the following theorem (from INFI):

Theorem 6. Let

f(x) ∈ C∞(R), f(x0) = 0, f(x) 6= 0 as x ∈ [a, x0).

Then
∫ x0

a
dx

f(x) = ∞.

5. Equations of the form x′(t) = f(ax(t) + bt + c)

Here f is any C1 function of one variable. The equation can be solved by the
substitution

y(t) = ax(t) + bt + c.

In fact, one has
y′ = ax′ + b = af(y) + b,

and we get an autonomous equation (for y(t)).

6. Equations of the form x′ = f(x
t )

Such equations are called homogeneous. Examples:

x′ = sin(x
t )

x′ = ax+bt
cx+dt (the function ax+bt

cx+dt can be written in the form ay+b
cy+d , where y = x/t)

The last example can be generalized:

x′ =
∑m

i=0 aix
itm−i

∑m
i=0 bixitm−i

In fact, the function in the right hand part can be written in the form
∑m

i=0 aiy
i

∑m
i=0 biyi

, y = x/t.

An equation of the form x′ = f(x
t ) can be solved by the substitution y(t) =

x(t)/t. In fact,

y′(t) =
x′(t) · t− x(t)

t2
=

f(y) · t− x(t)
t2

=
f(y)− y

t

and we obtain an equation with separable variables for y(t).

Remark. The direct application of this method requires working in a domain
in R2(t, x) which does not intersect the line t = 0.
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7. Equations of the form

(13) x′ =
a11x + a12t + b1

a21x + a22t + b2

If b1 = b2 = 0 we have a homogeneous equation (see the previous section). Let
us try to reduce b1, b2 to 0 by shifting the function x(t) and the time t, i.e. we
introduce new unknown function

y(t) = x(t) + α

and new time
τ = t + β.

Then
y′(τ) = y′(t + β) = x′(t + β) = x′(τ) =

=
a11x(τ) + a12t + b1

a21x(τ) + a22t + b2
=

a11

(
y(τ)− α

)
+ a12

(
τ − β

)
+ b1

a21

(
y(τ)− α

)
+ a22

(
τ − β

)
+ b2

We obtain the following equation with the new (shifted) time τ and new unknown
function y(τ):

y′(τ) =
a11y + a12τ + b̃1

a21x + a22τ + b̃2

,

where (
b̃1

b̃2

)
=

(
b1

b2

)
−

(
a11 a12

a21 a22

)
·
(

α
β

)
.

If

det
(

a11 a12

a21 a22

)
6= 0

then we can solve the system of two linear equations b̃1 = 0, b̃2 = 0 (with two
unknown α, β). We obtain a homogeneous equation (see the previous section).

Consider now the case

det
(

a11 a12

a21 a22

)
= 0, a11 6= 0

In this case
(a21, a22) = k(a11, a12)

for some k ∈ R. In this case the initial equation (13) takes the form

(14) x′ =
a11x + a12t + b1

k · (a11x + a12t) + b2

This equation can be solved by the substitution

y(t) = a11x(t) + a12t.

In fact, we have

y′(t) = a11x
′(t) + a12 = a11 · y(t) + b1

ky(t) + b2
+ a12

and we obtain an autonomous equation for y(t).
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Consider now the case

det
(

a11 a12

a21 a22

)
= 0, a11 = 0

In this case either a12 = 0 or a21 = 0 (or a12 = a21 = 0).

If a12 = 0 then the the initial equation (13) takes the form

x′ =
b1

a21x + a22t + b2

which is an equation of the form given in section 5 (can be solved by the substitution
y(t) = a21x(t) + a22t + b2).

Finally, if a21 = 0 then the the initial equation (13) takes the form

x′(t) =
a12t + b1

a22t + b2

which is a “baby“ equation.

8. Equation of the form

(15) x′ = f(t)xr + g(t)x

Equations of this form are called Bernoulli equations. Here r is a real number
(not necessary integer!) It can be either positive or negative. If r = 0 then (15) is a
linear (non-homogeneous) equation, see section 2. If r = 1 then (15) is an equation
with separable variables, see section 3. Therefore in what follows we will assume

r 6= 0, r 6= 1.

Equations (15) can be solved by the substitution

y = xµ

with a suitable µ ∈ R. One has:

y′ = µxµ−1x′ = µxµ−1 · (f(t)xr + g(t)x
)

=

= µ ·
(
f(t)xr+µ−1 + g(t)xµ

)
= µ ·

(
f(t)y

r+µ−1
µ + g(t)y

)

Now it is clear that one should take

µ = 1− r

to obtain
y′ = (1− r) ·

(
f(t) + g(t)y

)

which is a linear ODE, see section 2.

Exercises

Exercise 1. Let x(t) be solution of the equation x′ = sin(t2) ·x+cos(t2) satisfying
the initial condition x(12) = 7. Find x(14). Integrals in the answer OK.

Exercise 2. Let x(t) be solution of the equation x′ = t3 · sin(x) satisfying the
initial condition x(1) = 2. Find t1 such that x(t1) = 3. Integrals in the answer OK.
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Exercise 3. Let x(t) be solution of the equation x′ =
√

(2x + t + 1)2 + 1 satisfying
the initial condition x(0) = 0. Find t1 such that x(t1) = 3. Integrals in the answer
OK.

Exercise 4. Let x(t) be solution of the equation

x′ =
t3 + x3

tx(t + x)
satisfying the initial condition x(2) = 5. Find t1 such that x(t1) = 3t1. Integrals in
the answer OK.

Exercise 5. Let x(t) be solution of the equation

x′ =
x + t + 2
2x− t− 1

satisfying the initial condition x(0) = 0. Give a formula relating x(t) and t. Inte-
grals in this formula are OK.

Exercise 6. Let x(t) be solution of the equation

x′ = x(t3 + x)

satisfying the initial condition x(2) = 1. Find x(3). Integrals in the answer OK.

Exercises 7 - 10
Let x(t) be solution of the equation given below, satisfying the initial condition

x(0) = x0 with x0 given below, and defined on maximal possible time-interval
(t−, t+). Find t±. Find B = limt→t+ x(t) and A = limt→t− x(t). Draw the graph
of x(t).

ACCEPTABLE answers (for t±, A,B):
∞; −∞; a finite number satisfying the written formula or equation (integrals

in the formula or equation are OK ONLY if they are convergent!).
ATTENTION: all exercises and cases below are different, you should solve all

of them.

Exercise 7.
x′ = (x− 4)(x− 5)(x− 6)(t− 1)(t− 2)(t− 3)

(a) x0 = 7 (b) x0 = 5.5 (c) x0 = 4.5 (d) x0 = 0

Exercise 8.

x′ =
(x− 4)(x− 5)(x− 6)
(t− 1)(t− 2)(t− 3)

, x0 = 4

Exercise 9.

x′ =
sin(t)
x8 + 1

, x(0) = 0

Exercise 10.

x′ =
1− x3

1− t2
, x(0) = 0


