
Lecture F
.

Two body problem on a line

You will meet two body problem in few years, when your girlfriend (boyfriend)
will be offered a good job in Tel Aviv (or USA) and you – in Haifa, or vise a versa.
I hope you will solve this problem somehow. I also hope that you will not deal with
a three body problem in this sense.

In math and physics the two body problem is as follows: one (big) body is
located all the time at the center of the coordinate system 1 and attracts (or pushes
away) another (small) body with a certain force whose direction belongs to the line
joining the two bodies. The module of the force depends on the distance between
the bodies only.

The classical two body problem is the dynamics (movement) of our Earth (or
any other planet) under the gravity of Sun. Let p be the point at which the Earth
is located at some time-moment t0 and let v0 be the vector of its velocity at the
same time-moment. Denote by O the point of the location of Sun. Then it is
clear physically (and can be proved mathematically) that all the time the Earth
will move in the fixed plane P containing the point O and the vector v. Therefore
Earth-Sun is a two body problem on a plane.

Though this problem is the most applicable (people use its solution daily) we
have not developed techniques to solve it. The thing is that it requires a system of
second order ODEs rather than one second order ODE. In fact, the dynamics of a
body in a plane is described by two functions x1(t) and x2(t).

We will learn a simpler two body problem – on a line. On the other hand, we will
not restrict ourselves to a concrete force, it will be given by an arbitrary function.

Namely, fix the following. One (big) body stays all the time at the point x = 0 of
the x-axes. Another (small) body moves along the x-axes only due to two reasons:

(a) initial position x0 > 0 and initial velocity v0

(b) the big body attracts (or pushes away) the small one with a force F = F (x)
which depends on the coordinate x of the small body only.

The most interesting cases are:

1. Attraction with a force F (x) tending to 0 as x →∞ and v0 > 0.

2. Pushing away with a force F (x) tending to 0 as x → 0 and v0 < 0.

The most important question, in each of these problems, is as follows: will the
bodies meet or not? A particular case of problem 1 is a rocket launched from the
surface of the Earth, vertically up, with initial velocity v0. Then, as you know,
if v0 is sufficiently big then the rocket will not return to the Earth, will tend to
∞ (provided that we think about the Earth and the rocket only, forgetting about
other bodies in the Universe). If v0 is smaller than certain “critical” value then
the rocket will return. In the case of the rocket the force F (x) is proportional to
1/x2. What will be if F (x) is another function? Will it also be a certain “critical”
velocity? Or the bodies will meet however is big v0?

1sometimes this assumption requires a moving coordinate system
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Similarly, in problem 2: will the small body tend all the time to the big one and
approach it (in finite or infinite time) or, another possibility, the small body after
some time will change its velocity from negative to positive and then certainly it
will go to ∞?

Of course, except these questions there are many others. For example, assume
that in problem 1 the bodies will meet. What is the maximal distance between
them? In which time the distance will be maximal? In problem 2: if the bodies do
not meet, what is the minimal distance between them? In which time the distance
will be minimal?

There are many other natural questions, and we will learn how to answer. I will
concentrate on Problem 1. Problem 2 can be solved by a similar method, therefore
many questions related to Problem 2 will be left for exercises and tests (of course
tests will contain Problem 1 too).

Let us formulate Problem 1 in math terms. The acceleration of the small body
is x′′(t), where x(t) is its coordinate at time-moment t. The acceleration is equal to
force/mass – the second Newton law. The mass m is constant. Let f(x) = F (x)/m,
where F (x) is the force. We obtain the equation

(0.1) x′′ = −f(x).

We need certain assumptions on the function f(x). At first, we will assume that
it is defined for x > 0 only. Physically this corresponds to the fact that the small
body cannot “go through” the big body. Secondly, since we put the sign minus in
the equation, we will assume that f(x) > 0 fort any x > 0 – this corresponds to
the case that the big body attracts the small one. Finally, in order to pass from
physical intuition to math theorems, we have to assume that f(x) is not too bad,
namely that it satisfies the assumptions of the existence and uniqueness theorem,
see Lecture D. Therefore we assume:

(0.2) f(x) ∈ C1(0,∞), f(x) > 0 for any x > 0.

We also fix the initial condition corresponding to the initial position of the small
body and its initial velocity like in Problem 1 (against the direction of the force):

(0.3) x(t0) = x0 > 0, x′(t0) = v0 > 0.

Now we formulate Problem 1 in math terms:

to analyze solutions of equation (0.1) satisfying the initial conditions (0.3) and
defined for t ≥ t0; the function f(x) in the equation satisfies (0.2).

Theorem 1. (Two cases = two classes of solutions) Consider equation (0.1)
with f(x) satisfying (0.2). Fix any initial condition of form (0.3). Let x(t) be
solution of the equation satisfying these initial conditions and defined on interval
(t0, T ), where T ≤ ∞ is maximal possible. Then x(t) is a concave (Hebrew: kaura)
function belonging to one of the following two classes (cases):

Class = case A.

T = ∞;

x(t) is a strictly increasing function for any t > t0;

x(t) →∞ as t →∞.
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Class = case B.

T is a finite number;

there exists t1 ∈ (t0, T ) such that x(t) has global maximum at the point t1;

there are no other local maxima or minima: the function x(t) is increasing as
t ∈ (t0, t1) and decreasing as t ∈ (t1, T );

x(t) → 0 as t → T .

The physical interpretation of cases A and B is clear. The time-moment T in
case B is the time-moment when the bodies meet.

Attention. Theorem 1 does not say that there exist solutions of class A and of
class B. It only says: either A or B. We will see later that there are always solutions
of class B and whether there are solutions of class A – depends on the function (=
force) f(x).

Proof of Theorem 1.

Lemma 1.1. Any solution x(t) is a concave function.

Proof. The equation x′′(t) = −f(x(t)) and the condition f(x) > 0 imply that
x′′(t) < 0 for any t of the interval of the definition of the solution. ¤

Lemma 1.2. Assume that the solution x(t) has a non-vanishing derivative:
x′(t) 6= 0 for any t ∈ (t0, T ). Then T = ∞.

Proof. Assume, to get contradiction, that T < ∞. The assumption x′(t) 6= 0 implies
that x(t) is an increasing function. Therefore there is a finite limit limt→T x(t) =
B1. Since x(t) is concave (Lemma 1.1) then the first order derivative x′(t) is a
decreasing function. Therefore there is a finite limit limt→T x′(t) = B2. Now we
use the theorem on prolongation of solutions (Lecture D, Theorem 2). By this
theorem the solution x(t) can be prolonged to (t0, T + ε), ε > 0. Contradiction. ¤

Lemma 1.3. Assume that the solution x(t) is a strictly increasing solution
defined for t ∈ (t0,∞). Then limt→∞ x(t) = ∞.

Proof. An increasing function tends either to a finite number or to ∞. Assume, to
get contradiction, that x(t) → A < ∞ as t →∞. Then x(t) < A for any t ∈ (t0,∞)
and consequently x(t) ∈ [x0, A] for any t ∈ (t0,∞). The function f(x) is positive,
therefore it takes the minimal value δ > 0 on the closed interval [x0, A]. We obtain:

x′′(t) < −δ, t ∈ (t0,∞), δ > 0.

It follows, by a simple integration:

x′(t) = x′(t0) +
∫ t

t0

x′′(s)ds < v0 − δ · (t− t0).

Consequently x′(t) → −∞ as t → ∞, i.e. x′(t) < 0 for sufficiently big t. This
contradicts to the assumption that x(t) is an increasing function. ¤
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Lemmas 1.1, 1.2, 1.3 imply:

if x′(t) 6= 0 for any t of the interval of the definition of the solution x(t) then one
has case A in Theorem 1.

Lemma 1.4. Assume that there exists t1 ∈ (t0, T ) such that x′(t1) = 0. Then
such t1 is unique, the function x(t) has the global max at the point t1.

Proof. In fact, x(t) is a concave function (Lemma 1.1), and it is a simple exercise
to prove that the lemma holds for any concave function. ¤

Lemma 1.5. Assume that there exists t1 ∈ (t0, T ) such that x′(t1) = 0. Then
T < ∞.

Proof. Since x(t) has max at the point t1 then x′(t1 + ε) = δ < 0 for sufficiently
small ε > 0. Since x′′(t) < 0 for all t ∈ (t0, T ) then x′(t) < δ < 0 for t ∈ (t1 + ε, T ).
It follows

x(t) = x(t1 + ε) +
∫ t

t1+ε

x′(s)ds < x(t1 + ε)− δ(t− t1 − ε), t ∈ (t1 + ε, T ).

We see that if T = ∞ then for sufficiently big t one has x(t) < 0. This is impossible
since the function f(x) is defined for x > 0 only. Therefore T is finite. ¤

Lemma 1.6. Assume that there exists t1 ∈ (t0, T ) such that x′t1) = 0. Then
x(t) → 0 as t → T .

Proof. One has x(t) > 0 for any solution x(t) and any t in the interval of its
definition. In the interval (t1, T ) the function x(t) is decreasing; its derivative x′(t) is
also decreasing. Therefore there are finite limits limt→T x(t) = B1, limt→T x′(t) =
B2. We know that B1 ≥ 0. If B1 > 0 then by the theorem on prolongation of
solutions (Lecture D, Theorem 2) one can prolong the solution x(t) to an interval
(t0, T + ε), ε > 0. This contradicts to the definition of T . Therefore B1 = 0. ¤

Lemmas 1.4,1.5,1.6 imply:

if there exists a point t1 ∈ (t0, T ) such that x′(t1) = 0 then one has case B in
Theorem 1.

Now Theorem 1 is completely proved.

How to distinguish cases A and B? To answer we use the energy preserving law,
in math terms (Lecture E, Theorem 1, Corollary 2). One has

(x′(t))2

2
−

∫ x(t)

x0

−f(s)ds =
v2
0

2
,

or, simplifying

(0.4)
(x′(t))2

2
+

∫ x(t)

x0

f(s)ds =
v2
0

2
.

Theorem 2.

case A ⇐⇒ v2
0

2
≥

∫ ∞

x0

f(s)ds case B ⇐⇒ v2
0

2
<

∫ ∞

x0

f(s)ds
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Proof. Relation (0.4) implies

v2
0

2
≥

∫ x(t)

x0

f(s)ds.

This holds for any t of the interval of definition of x(t). In case A x(t) is defined for
arbitrarily big t and tends to ∞ as t →∞. Taking the limit as t →∞ we obtain:

Claim 2.1. In case A one has v2
0
2 ≥ ∫∞

x0
f(s)ds.

Consider now case B. In this case there exists t1 such that x′(t1) = 0. Substi-
tuting t1 to (0.4) we obtain

v2
0

2
=

∫ xmax

x0

f(s)ds, where xmax = x(t1).

since f(x) > 0 for any x > 0, this relation implies:

Claim 2.2 In case B one has v2
0
2 <

∫∞
x0

f(s)ds.

Theorem 2 is a logical corollary of Claims 2.1 and 2.2. ¤

What happens if the integral
∫∞

x0
f(x)dx diverges? We obtain the following

corollary of Theorem 2:

Theorem 3. (direct corollary of Theorem 2).

If
∫∞

x0
f(x)dx = ∞ then in the two body problem case A is impossible, i.e. the case

B holds for any x0, v0. If
∫∞

x0
f(x)dx < ∞ then either of the cases A,B is possible.

Define the “critical“ velocity

vcrit
0 =

√
2

∫ ∞

x0

f(x)dx.

The case A holds if and only if v0 ≥ vcrit
0 and the case B holds if and only if

v0 < vcrit
0 . (Of course, vcrit

0 depends on x0).

Example 1. Let us answer the following questions for a rocket that has been
launched from the surface of the Earth, vertically up, with the initial velocity v0.
Assume that the gravity to the Earth is the only acting force. Questions:

Q1. Will the rocket return to the surface of the Earth?

Q2: If yes – when?

Q3: What is the maximum height of the rocket?

Q4: In which time the rocket will reach its maximum height?

Q5: In which time the height of the rocket will be 10 km?

Solution. According to the gravity law one has the equation

x′′ = −k/x2,

where x is the distance between the rocket and the center of the Earth, and k
is a certain positive coefficient. It can be easily found because we know that the
acceleration near the surface of the Earth is equal to −g. Therefore k/R2 = g,
where R is the radius of the Earth. We obtain

x′′ = −gR2/x2.
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We also have the initial conditions

x(t0) = R, x′(t0) = v0.

Calculate ∫ ∞

R

gR2

x2
dx = gR.

By Theorem 3 the rocket will return if and only if

(0.5) v0 <
√

2gR.

We have answered the first question.

Now let us answer questions Q2, Q3, Q4 (assuming, of course, that the rocket
will return, i.e. (0.5) holds). We use the energy preserving law (Lecture E, Theorem
1 and Corollary 2). The energy equation is as follows:

(x′(t))2

2
−

∫ x(t)

R

−gR2

x2
ds =

v2
0

2
.

Taking the integral we obtain

(0.6) (x′(t))2 − 2gR2

x(t)
= v2

0 − 2gR.

Let us find xmax = x(t1), where t1 is the time-moment such that x′(t1) = 0, i.e.
the time-moment at which the height is maximal. To find t1 it suffices to substitute
t1 to (0.6). We obtain

(0.7) xmax =
2gR2

2gR− v2
0

.

Note that the maximum height of the rocket is xmax−R, since x is the distance to
the center of the Earth.

We have answered Q3.

Question Q4: we have to find t1 − t0, where t0 is the time-moment at which the
rocket was launched. We use the inverse function t(x). It is not defined for all
t, but it is well-defined for

t ∈ (t0, t1), x ∈ (R, xmax).

In this interval x′(t) > 0, therefore

dx

dt
= +

√
v2
0 − 2gR +

2gR2

x
,

dt

dx
= +

1√
v2
0 − 2gR + 2gR2

x

,

and we obtain that the rocket will reach its maximum height in time

(0.8) t1 − t0 = T =
∫ xmax

R

dx√
v2
0 − 2gR + 2gR2

x

.

We have answered Q4.

The answer to Q2 (when the rocket will return) follows from the theorem on
symmetries of solutions of equations x′′ = G(x) about a critical point (Lecture E,
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Theorem 3). This theorem implies that the rocket will return to the surface of the
Earth in time

2T = 2 ·
∫ 2gR2

2gR−v2
0

R

dx√
v2
0 − 2gR + 2gR2

x

.

We have answered Q1 - Q4.

Now we deal with Q5. We have to give the answer in each of the cases: the
rocket does not return (case A); the rocket returnes (case B).

Denote by t2 the time-moment such that x(t2) = 10 + R (i.e. the height of the
rocket is 10 km, provided that R is measured in km). We have to find t2 − t0.

If v0 ≥
√

2gR then we have case A, x(t) is an increasing function, and therefore
there will be unique time-moment t2 such that x(t2) = 10 + R (i.e. the height of
the rocket is 10 km, provided that R is measured in km). The time-moment t2 can
be found in the same way as above:

t2 = t0 +
∫ 10+R

R

dx√
v2
0 − 2gR + 2gR2

x

.

If we wish to get the answer in DAYS then R must be measured in km and g must
be measured in km/day2.

If v0 <
√

2gR then we have case B. In this case one has to calculate xmax, see
(0.7), and dependently on v0:

if xmax < 10+R then there are no solutions – the rocket will never reach the height
10km.

if xmax = 10 + R then t2 = t1 and t2 − t0 = T , see (0.8).

if xmax > 10 + R then there will be two time-moments t′2 < t′′2 such that

x(t′2) = x(t′′2) = 10 + R.

To find t′2 we solve equation (0.6) on the interval t ∈ (t0, t′2), where x′(t) > 0, and
exactly like above (using the inverse function) we obtain

(0.9) t′2 = t0 +
∫ 10+R

R

dx√
v2
0 − 2gR + 2gR2

x

.

To find t′′2 there are two ways. In any case we need the time t1 to the maximal
height, which we already know, see (0.8).

First way to find t′′2 . We solve equation (0.6) on the interval t ∈ (t1, t′′2), where
x′(t) < 0. We obtain

dx

dt
= −

√
v2
0 − 2gR +

2gR2

x
,

dt

dx
= − 1√

v2
0 − 2gR + 2gR2

x

,

(0.10) t′′2 = t1 +
∫ 10+R

xmax

− dx√
v2
0 − 2gR + 2gR2

x

= t1 +
∫ xmax

10+R

dx√
v2
0 − 2gR + 2gR2

x

.
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Substituting t1 = (0.8) we obtain

(0.11) t′′2 = t0 +
∫ xmax

R

dx√
v2
0 − 2gR + 2gR2

x

+
∫ xmax

10+R

dx√
v2
0 − 2gR + 2gR2

x

.

Second way to find t′′2 . We use the theorem on symmetries of solutions of
equations x′′ = G(x) about a critical point (Lecture E, Theorem 3). By this
theorem

t′′2 − t1 = t1 − t′2
and consequently

(0.12) t′′2 = 2t1 − t′2.

Substituting t1 = (0.8) and t′2 = (0.9) we obtain

(0.13) t′′2 = t0 + 2
∫ xmax

R

dx√
v2
0 − 2gR + 2gR2

x

−
∫ 10+R

R

dx√
v2
0 − 2gR + 2gR2

x

.

Of course (0.13) and (0.11) is the same answer (check it).


