ODEs 104285. Bohan-2. June 6, 2012

2 problems (50 pts each). 1 hour. Final answers and short explanations are required. Attach your work to this page. Do not forget to write down your t / z number here:
t/z:

You can use any notes, books, calculators. If you wish to compare your and my answers today copy your answers and the code of your version in a separate page and take it home. Good luck!

1. Let $x=x(t)$ be solution of the equation

$$
x^{\prime \prime}(t)=-\frac{1}{x^{3}(t)}
$$

satisfying the initial conditions

$$
x(0)=2, \quad x^{\prime}(0)=v_{0}>0
$$

(think on the two body problem). Find a necessary and sufficient condition on $v_{0}>0$ under which there exists $t_{1}>0$ such that

$$
x^{\prime}\left(t_{1}\right)=\frac{1}{2} v_{0} .
$$

No integrals in the answer.
Solution. Certainly t_{1} exists if v_{0} is smaller than the "critical velocity" $v_{0, \text { crit }}$. If $v_{0} \leq v_{0, \text { crit }}$ then $x(t) \rightarrow \infty$ as $t \rightarrow \infty$ and $x^{\prime}(t)$ decreases and tends to a certain number which might be either smaller or bigger than $\frac{v_{0}}{2}$. Therefore in the case $v_{0} \geq v_{0, \text { crit }}$ the required t_{1} exists only if v_{0} is not too big.
The energy equation and the initial conditions give

$$
\left(x^{\prime}(t)\right)^{2}-\frac{1}{x^{2}(t)}=\text { const }=v_{0}^{2}-\frac{1}{4}
$$

and the required t_{1} exists if and only if the equation

$$
\left(\frac{1}{2} v_{0}\right)^{2}-\frac{1}{x^{2}}=v_{0}^{2}-\frac{1}{4}
$$

has a solution $x>0$. It means that $v_{0}<\frac{1}{\sqrt{3}}$ which is the final answer. Note that the critical velocity is $v_{0, \text { crit }}=\frac{1}{2}<\frac{1}{\sqrt{3}}$.

See next page for Problem 2
2. A pendulum is described by the equation

$$
\theta^{\prime \prime}=-\frac{g}{l} \sin \theta
$$

where l is the pendulum length, the angle θ is measured in radians, the positive direction is anticlockwise, and $\theta=0 \bmod 2 k \pi$ corresponds to the position of stable equilibrium. At the initial time $t=0$ the pendulum is horizontal $\left(\theta(0)=\theta_{0}=\pi / 2\right)$ and has initial velocity $\theta^{\prime}(0)=v_{0}=\sqrt{g} \mathrm{rad} / \mathrm{sec}$ directed anticlockwise. In which time t_{1} the pendulum will pass (for the first time) the position of stable equilibrium? This means that

$$
t_{1}=\min \left\{t \geq 0: \quad \theta\left(t_{1}\right)=0 \bmod 2 \pi k\right\}
$$

The answer depends on the length l and you should solve the problem for
a) the length l is 1 meter
b) the length l is 3 meters.

Integrals in the answers are OK.
Solution. The critical velocity for $\theta_{0}=\pi / 2$ is $v_{0, \text { crit }}=\sqrt{\frac{2 g}{l}}$.
In case a), when $l=1$ one has $v_{0}<v_{0, \text { crit }}$, therefore the pendulum will not make a full rotation. In this case the energy equation has the form

$$
\left(\theta^{\prime}(t)\right)^{2}-2 g \cos \theta=g
$$

and at first one should find $\theta_{\max }$ substituting $t=t^{*}$ such that $\theta^{\prime}\left(t^{*}\right)=0$. We obtain $\cos \theta_{\max }=-\frac{1}{2}$ and consequently $\theta_{\max }=\frac{2 \pi}{3}$. For $\pi / 2 \leq \theta \leq \theta_{\max }$ one has, from the energy equation

$$
\theta^{\prime}=+\sqrt{g(1+2 \cos \theta)}
$$

from where

$$
t^{*}=\int_{\pi / 2}^{2 \pi / 3} \frac{d \theta}{\sqrt{g(1+2 \cos \theta)}}
$$

For $t^{*} \leq t \leq t_{1}$ one has

$$
\theta^{\prime}=-\sqrt{g(1+2 \cos \theta)}
$$

from where

$$
t_{1}-t^{*}=-\int_{2 \pi / 3}^{0} \frac{d \theta}{\sqrt{g(1+2 \cos \theta)}}=\int_{0}^{2 \pi / 3} \frac{d \theta}{\sqrt{g(1+2 \cos \theta)}}
$$

Therefore

$$
t_{1}=\int_{\pi / 2}^{2 \pi / 3} \frac{d \theta}{\sqrt{g(1+2 \cos \theta)}}+\int_{0}^{2 \pi / 3} \frac{d \theta}{\sqrt{g(1+2 \cos \theta)}}
$$

In case b), when $l=3$ one has $v_{0}>v_{0, c r i t}$, therefore the pendulum make a full rotation. In this case the energy equation takes the form

$$
\left(\theta^{\prime}(t)\right)^{2}-\frac{2}{3} g \cos \theta=g .
$$

One has $\theta^{\prime}(t)>0$ for all t, therefore $\theta^{\prime}=+\sqrt{g\left(1+\frac{2}{3} \cos \theta\right)}$ and we obtain

$$
t_{1}=\int_{\pi / 2}^{2 \pi} \frac{d \theta}{\sqrt{g\left(1+\frac{2}{3} \cos \theta\right)}}
$$

