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I E. Cartan, Les systemes de Pfaff a cinque variables et les
equations aux derivees partielles du second ordre,
Ann. Sci. Ecole Normale, 1910

I Topic (in terms of vector fields, Cartan used equivalent
language of 1-forms):

2-planes in TR5 = (2, 5) distributions.

I Most famous results concern (2, 3, 5) distributions:
span(V1,V2) such that the vectors

V1, V2, [V1,V2], [V1, [V1,V2]], [V2, [V1,V2]]

are linearly independent at any point (generic growth vector).
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I SELECTED CARTAN’s RESULTS
on symmetries of (2,3,5) distributions

(germs at 0 ∈ R5)

I The maximal possible dimension of the group of local
symmetries is 14. All distributions with 14-dim symmetry
group are diffeomorphic; the symmetry group is simple
(it is G2).

I Terminology (not Cartan’s): such distributions are called
flat (2, 3, 5) distributions.

I A distribution D is flat if and only if it admits a nilpotent
(2, 3, 5) basis V1,V2:

D = span(V1,V2): all length ≥ 4 Lie brackets of V1,V2

are equal to 0.
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I The maximal possible dimension of the symmetry group of a
non-flat distribution is 7.

I In the local classification of distributions with 7-dimensional or
6-dimensional group of symmetries there is exactly one
modulus.
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I Cartan proves these and other results using his famous Cartan
tensor.

I Given a (2, 3, 5) distribution D Cartan constructs a map, by a
long procedure: Cartan’s method (way, road, approach?)

R5 3 p → C
(4)
D (p; x1, x2) (Cartan’s tensor at p)

where C (4)(x1, x2) is a homogeneous degree 4 polynomial of
two variables satisfying the following:

I if the germ of D at p is diffeomorphic to the germ of D̃ at p̃

then C
(4)
D (p; x1, x2) and C

(4)

D̃
(p̃; x1, x2) are linearly equivalent;

I =⇒ the Cartan tensor C
(4)
D (0; x1, x2) defined modulo linear

equivalence is the Cartan invariant of the distribution germ at
0 ∈ R5 (wrt local diffeomorphisms preserving 0).

I if D is the germ at 0 ∈ R5 then D is flat if and only

C
(4)
D (p; x1, x2) = 0 for all p close to 0.
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I I will show how the mentioned Cartan’s results and
a few new results can be obtained and easily explained using
exact normal forms for (2, 3, 5) distributions,

I and how exact normal forms can be constructed using the
“parallel” normalization procedure along with
quasi-homogeneous filtration in the space of infinite jets.

I Instead of usual jets one should work with quasi-jets wrt
natural weights

w(x1) = w(x2) = 1, w(x3) = 2, w(x4) = w(x5) = 3

I otherwise much longer computation and weaker results.

I The normalization procedure, leading to exact normal form,
consists of two steps (if one uses the usual filtration: 7 or 8
steps).
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I The most important is the first step. Though it gives only
“almost exact” normal form (exact up to a finite dimensional
group of transformations),

it gives a simple explanation of Cartan invariant and allows to
generalize it.

I Modulo quasi-homogeneity, the first step of the normalization
procedure is not more than the classical “normalization by the
principal part”, for example the resonant normal form serving
for all germs of singular vector field germs with a fixed linear
approximation at 0 (Poincare, Dulac).

I The role of linear approximation: the nilpotent approximation
of a (2, 3, 5) distribution D which is the symbol of D
(nilpotent graded (2,3,5) Lie algebra) expressed in terms of
quasi-homogeneous degree −1 vector fields.
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I The first step of the normalization procedure based on
quasi-homogeneity is, to some extend, “diffeomorphic” to
Tanaka prolongation of the nilpotent (2, 3, 5) algebra, and
probably some of results I will tell about can be obtained
developing Tanaka prolongation, but in my opinion developing
the method going back to Poincare and Dulak is simpler.

I The generalized Cartan invariant allows to analyze the Lie
algebras of all possible groups of symmetries preserving 0 (a
very important subgroup of the whole symmetry group) and
to prove

I Theorem. As an abstract Lie algebra, the algebra of
infinitesimal symmetries vanishing at 0, of any non-flat
(2, 3, 5) distribution, is either {0}, or 1-dimensional, or
2-dimensional non-Abelian, or the 3-dimensional algebra
sl2(R) (the last case seems to be new).
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I Continuation of the theorem. As a Lie algebra of singular
vector fields, in each of these cases it is linearizable, i.e. in
suitable local coordinates it consists of linear vector fields,
even though each of them is resonant.

Any vanishing at 0 infinitesinmal symmetry of any non-flat
(2,3,5) distribution has, in suitable coordinates, the form

VA :

(
ẋ1

ẋ2

)
= A

(
x1

x2

)
, ẋ3 = (traceA)x3,(

ẋ4

ẋ5

)
= (A + traceA · I )

(
x4

ẋ5

)
where a constant 2× 2 matrix A is one of the follows:



I

(
1 0
0 −1

)
,

(
0 1
−1 0

)
: vector fields b±1:1(

0 0
0 1

)
: vector field b0:1(

p 0
0 −q

)
: 1 ≤ p < q: vector field bp:q(

0 0
1 0

)
: vector field b0:0

Either one of the eigenvalues is 0 or their ratio is a negative
rational number.



I b+
1:1 = x2

∂
∂x1
− x1

∂
∂x2

+ x5
∂
∂x4
− x4

∂
∂x5

b−1:1 = x1
∂
∂x1
− x2

∂
∂x2

+ x4
∂
∂x4
− x5

∂
∂x5

b1:0 = x2
∂
∂x2

+ x3
∂
∂x3

+ x4
∂
∂x4

+ 2x5
∂
∂x5

bp:q = px1
∂
∂x1
− qx2

∂
∂x2

+ (p − q)x3
∂
∂x3

+

+(2p − q)x4
∂
∂x4

+ (q − 2p)x5
∂
∂x5

b0:0 = x1
∂
∂x2

+ x4
∂
∂x5
.

I Lie algebras of infinitesimal symmetries vanishing at 0 of any
non-flat distribution:

• 1-dim (any of these vector field)

• 2-dim non-Abelian span(b1:0, b0:0

• sl2(R): span(b+
1:1, b

−
1:1, b0:0) =

= all linear traceless vector fields.



I b+
1:1 = x2

∂
∂x1
− x1

∂
∂x2

+ x5
∂
∂x4
− x4

∂
∂x5

b−1:1 = x1
∂
∂x1
− x2

∂
∂x2

+ x4
∂
∂x4
− x5

∂
∂x5

b1:0 = x2
∂
∂x2

+ x3
∂
∂x3

+ x4
∂
∂x4

+ 2x5
∂
∂x5

bp:q = px1
∂
∂x1
− qx2

∂
∂x2

+ (p − q)x3
∂
∂x3

+

+(2p − q)x4
∂
∂x4

+ (q − 2p)x5
∂
∂x5

b0:0 = x1
∂
∂x2

+ x4
∂
∂x5
.

I Lie algebras of infinitesimal symmetries vanishing at 0 of any
non-flat distribution:

• 1-dim (any of these vector field)

• 2-dim non-Abelian span(b1:0, b0:0

• sl2(R): span(b+
1:1, b

−
1:1, b0:0) =

= all linear traceless vector fields.



Additional important statement:

The almost exact normal form and the exact normal form are
parameterized by a function C (x1, ..., x5) in a certain ideal in the
ring of function germs. They hold in the same coordinates as the
coordinates in which all symmetries vanishing at 0 are linear.
These symmetries annihilate C (x1, .., x5).



The information about the Lie algebra of infinitesimal symmetries
vanishing at 0, up to diffeomorphisms rather than isomorphisms,
allows to classify (easily) all possible complete symmetry algebras
(including infinitesimal symmetries not vanishing at 0), and for
each of them to classify distributions with this symmetry algebra.



I EXAMLE: from one symmetry to 6-dim or 7-dim algebra of
symmetries

I Assume we have an infinitesimal symmetry
b1:0 = x2

∂
∂x2

+ x3
∂
∂x3

+ x4
∂
∂x4

+ 2x5
∂
∂x5

I The function C (x) in the almost exact normal form starts with
quasi-degree ≥ 4 and satisfies b1:0(C (x) = 0. Consequently

C = C (x1) = ±xm
1 + r1x

m+1
1 + r2x

m+2
1 + h.o.t.(quasi) m ≥ 4

I The second step normalization gives exact normal form: the
same with r1 = 0:

C = C (x1) = ±xm
1 + rxm+2

1 + h.o.t(quasi), m ≥ 4

I One gets immediately, from the exact normal form, the
infinitesimal symmetry

b0:0 = x1
∂
∂x2

+ x4
∂
∂x5

I and 4 linearly independent infinitesimal symmetries which do
not vanish at 0.
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I C = C (x1) = ±xm
1 + rxm+2

1 + h.o.t(quasi), m ≥ 4

I All together we have at least 6-dim algebra of infinitesimal
symmetries. For a non-flat distribution we cannot have one
more infinitesimal symmetry vanishing at 0.

I Therefore for non-flat distributions b1:0 “gives birth” to 5
more infinitesimal symmetries, and the whole symmetry
algebra has dimension 6 or 7.

I It has dimension 7 iff the distribution is homogeneous (the
symmetry group acts transitively).

I It is so iff m = 4:

C = C (x1) = ±x4
1 + rx6

1 + h.o.t(qiuasi), m ≥ 4

r can be arbitrary and h.o.t. are uniquely determined by r .
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more infinitesimal symmetries, and the whole symmetry
algebra has dimension 6 or 7.

I It has dimension 7 iff the distribution is homogeneous (the
symmetry group acts transitively).

I It is so iff m = 4:

C = C (x1) = ±x4
1 + rx6

1 + h.o.t(qiuasi), m ≥ 4

r can be arbitrary and h.o.t. are uniquely determined by r .



I C = C (x1) = ±xm
1 + rxm+2

1 + h.o.t(quasi), m ≥ 4

I All together we have at least 6-dim algebra of infinitesimal
symmetries. For a non-flat distribution we cannot have one
more infinitesimal symmetry vanishing at 0.

I Therefore for non-flat distributions b1:0 “gives birth” to 5
more infinitesimal symmetries, and the whole symmetry
algebra has dimension 6 or 7.

I It has dimension 7 iff the distribution is homogeneous (the
symmetry group acts transitively).

I It is so iff m = 4:

C = C (x1) = ±x4
1 + rx6

1 + h.o.t(qiuasi), m ≥ 4

r can be arbitrary and h.o.t. are uniquely determined by r .



I C = C (x1) = ±xm
1 + rxm+2

1 + h.o.t(quasi), m ≥ 4

I All together we have at least 6-dim algebra of infinitesimal
symmetries. For a non-flat distribution we cannot have one
more infinitesimal symmetry vanishing at 0.

I Therefore for non-flat distributions b1:0 “gives birth” to 5
more infinitesimal symmetries, and the whole symmetry
algebra has dimension 6 or 7.

I It has dimension 7 iff the distribution is homogeneous (the
symmetry group acts transitively).

I It is so iff m = 4:

C = C (x1) = ±x4
1 + rx6

1 + h.o.t(qiuasi), m ≥ 4

r can be arbitrary and h.o.t. are uniquely determined by r .



I From the data we have we obtain that if the distribution is
homogeneous and non-flat then a part of structure equations
in the 7-dim algebra is as follows:

[a1, a2] = a3, [a1, a3] = a4, [a2, a3] = a5

[a1, b1:0] = 0, [a1, b0:0] = a2, [a2, b1:0] = a2, [a2, b0:0] = 0

[b1:0, b0:0] = b0:0

I and (as an exercise on Jacobi identity) we obtain that the
algebra is isomorphic to one with the structure equations
above and the structure equations:

[a1, a4] = Ba3 − Cb0:0, [a1, a5] = [a2, a4] = 0, [a2, a5] = 0.

(remaining structure equations follow from Jacobi identity).
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I C = C (x1) = ±x4
1 + rx6

1 + h.o.t, m ≥ 4

I It is a solvable algebra with “decrease vector” (7,5,1,0).

I The couple (B,C ) is an invariant modulo scaling

B → k2B, C → k4C

therefore the sign of B and the number

λ = B2/C

is an invariant. It is uniquely determined by r .

I r takes any value, and λ takes any value except

λ 6= 100

9
.

I =⇒ the (2, 3, 5) distribution with the above 7-dim symmetry
algebra and λ = 100/9 is flat.
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I Corresponding Cartan’s results: Chapter IX. It takes 6 pages
to prove:

I If Cartan tensor is linearly equivalent to x4
1 at any point then

all Cartan’s invariants fundamentaux are defined by one
function I = I (x1) (Cartan’s notation);

I the symmetry group is 6-dimensional if I 6= const and
7-dimenional if I ≡ const

I the normal form:

ω1 = dx1+ 7
3 I x3dx2+x4dx3−

(
1
2x2

4 + 2
3 I x2

3− 1
2(1+I 2−I ′′)x2

2

)
dx5,

ω2 = dx2 − x3dx5, ω3 = −dx3 + x4dx5.
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I EXAMPLE: homogeneous non-flat distributions with the
symmetry

b+
1:1 = x2

∂
∂x1
− x1

∂
∂x2

+ x5
∂
∂x4
− x4

∂
∂x5

I The function C (x) in the almost exact normal form satisfies

b+
1:1(C (x)) = 0

and starts with terms of quasi-degree ≥ 4. It follows

C (x) =
±(x2

1 + x2
2 )m + r1(x2

1 + x2
2 )m+1 + r2x3(x2

1 + x2
2 )2 + h.o.t(quasi)

I The second step normalization gives exact normal form: the
same with r2 = 0:

C (x) = ±(x2
1 + x2

2 )m + r(x2
1 + x2

2 )m+1 + h.o.t.(quasi)
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I The theorem on the all possible Lie algebras of vanishing at 0
infinitesimal symmetries implies that b+

1:1 is the only such
symmetry. Therefore the max dimension of the symmetry
group is 6. If it is 6 the distribution is homogeneous.

I If it is so then m = 2:

C (x) = ±(x2
1 + x2

2 )2 + r(x2
1 + x2

2 )3 + higher quasi-degree

r can be arbitrary and h.o.t. are uniquely determined by r .

I By a simple work with Jacobi identity the 6-dim symmetry
algebra is defined by the equations

[a1, a2] = a3, [a1, a3] = a4, [a2, a3] = a5

[a1, b
+
1:1] = a2, [a2, b

+
1:1] = −a1

[a1, a4] = [a2, a5] = Ba3 + Cb+
1:1, [a1, a5] = [a2, a4] = 0
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I Like in the case of 7-dim symmetry group

λ =
B2

C

is an invariant,

I but unlike the case of 7-dim symmetry group it is an invariant
NOT of the Lie algebra:

I it is an invariant of the generating 2-plane span(a1, a2) in the
6-dim algebra.

I Here: “generating 2-plane”: plane span(a1, a2) such that

a1, a2, [a1, a2], [a1, [a1, a2]], [a2, [a1, a2]] are linearly
independent.

I A distribution with transitively acting symmetry group of
dimension 5 or more is uniquely determined by a generating
2-plane in the symmetry algebra.
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I C (x) = ±(x2
1 + x2

2 )2 + r(x2
1 + x2

2 )3 + higher quasi-degree

I The 6-dimensional algebra itself is one of

so3(R)⊕ so3(R) (generic value of λ = B2/C )

so3(R)⊕ solvable 3-dim algebra

so3(R)+ Abelian 3-dim algebra

I Like in the case of 7-dim symmetry group λ = B2/C is
uniquely determined by r ∈ R;

I and exactly like in the case of 7-dim symmetry algebra λ takes
all values except

λ =
100

9
if λ = 100/9 then the distribution is flat.

I Cartan has these results in Ch. XI. For the case
so3(R)⊕ so3(R) he has a normal form with parameters
m, n ∈ R whose ratio m/n is an invariant, with exceptional
value 81.
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I Why 100
9 for both 7-dim and 6-dim algebra?

I Some mystery, but exactly the same as the mystery in the
problem of a ball of radius R1 rolling over another ball of
radius R2 without slipping or twisting. This rolling is
described by (2, 3, 5) distribution with clear (natural) 6-dim
group of symmetries so3(R)⊕ so3(R). One of them is b+

1:1 up
to a diffeomorphism. The presence of b+

1:1 implies that either
there are no other symmetries or the distribution is flat, i.e.
there are 8 other symmetries. The distribution is a generating
plane in so3(R)⊕ so3(R) and its invariant is

λ = B2/C =
(µ2 + 1

µ

)2
, µ =

R1

R2

I The equation
(
µ2+1
µ

)2
= 100

9 has two positive solutions µ = 3

and 1/3 which gives one more proof of
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Theorem (R. Bryant). The distribution is flat if and only if the
ratio of the radii is 3 (or 1/3).

Recent works where this theorem was proved + very interesting
related math is explained:

A.Agrachev, Rolling Balls and Octonions, 2007

G.Bor, R. Montgomery, G2 and the rolling distribution, 2009



I Quasi-homogeneity
wrt weights λ1 = λ2 = 1, λ3 = 2, λ4 = λ5 = 3

I Quasi-homogeneous degree i vector field = linear combination
of quasi-degree i monomial vector fields.

I Quasi-degree of a monomial vector field xα ∂
∂xj

, is (λ, α)− λj

I The Lie brackets respect quasi-homogeneity:
[(i), (j)] ∈ (i + j).

I Except the zero vector field there are no quasi-homogeneous
degree ≤ −4 vector fields. The quasi-homogeneous vector
fields of degree −3 have the form a ∂

∂x3
+ b ∂

∂x4

I It follows that any length ≥ 4 bracket of quasi-homogeneous
degree −1 vector fields is 0.

I Consequently, any (2, 3, 5) distribution spanned by
quasi-homogeneous degree −1 vector fields is flat.
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I Nilpotent approximation
(starting point for the normalization)

I There are many ways to prove the following statement
(particular case of much more general Bellaiche theorem for
arbitrary bracket generating tuples of vector fields):

Proposition. Fix any (2, 3, 5) distribution spanned by
quasi-homogeneous degree −1 vector fields N1,N2. Any
(2, 3, 5) distribution D is diffeomorphic to a distribution
spanned by vector fields of the form

V1 = N1 + · · · , V2 = N2 + · · · ,

where the dots denote terms of quasi-degree ≥ 0.

I The distribution span(N1,N2) (or the couple N = (N1,N2))
is the nilpotent approximation of D.

I It is the symbol of D (graded nilpotent (2, 3, 5) Lie algebra;
all such symbols are isomorphic) represented by vector fields.
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I Infinitesimal linear operator
associated with the nilpotent approximation N = (N1,N2).

I A 2-distribution can be treated as a couple of vector fields
V = (V1,V2) and two distributions are diffeomorphic if the
corresponding couples of vector fields can be brought one to
the other by a local diffeomorphism Φ and multiplication by a
non-singular 2× 2 matrix H = H(x).

I The infinitesimal linear operator associated with N (in what
follows infinitesimal operator; notation LN is the linearization
(at the identity transformation) of the map (Φ,H)→ HΦ ∗N .
It is a map from the Lie algebra of the (pseudo)-group {Φ,H}
which is (Z , h), where Z is a vector field h = h(x) is any 2× 2
matrix, to the space of couples of vector fields.

I

LN : (Z , h) → [Z ,N ] + hN .
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I The operator LN respects the quasi-homogeneous filtration: if
h and Z are quasi-homogeneous of degree i then LN (Z , h) is
a couple of quasi-homogeneous vector fields of degree i − 1.

I The vector field part of

kerLN = kerL
(−3)
N + ker L

(−2)
N + · · ·

is the Lie algebra of infinitesimal symmetries of N . The matrix
part of kerLN is uniquely determined by the vector field part.

Dimension of kerL
(i)
N :

i ≥ 4: 0
I i = −1: 2 i = 1: 2

i = −2: 1 i = 0: 4 i = 2: 1
i = −3: 2 i = 3: 2

Type of vector fields
I Non-vanishing quasi-linear with zero

quasi-linear part

I Lie brackets: [(i), (j)] ∈ (i + j), |i | ≥ 4 =⇒ (i) = {0}
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I Lie algebra kerLN =
∑3

i=−3 kerL
(i)
N :

i = −1 : dim = 2 i = 0 : dim = 4 i = 1 : dim = 2
i = −2 : dim = 1 i = 2 : dim = 3
i = −3 : dim = 2 i = 3 : dim = 1

(2, 3, 5) nilpotent + gl2(R) + (2, 3, 5) nilpotent

I It is the 14-dim algebra g2 whose negative part
((i = −1,−2,−3) consists of non-vanishing symmetries,
central part (i = 0) consists of quasi-linear infinitesimal
symmetries, and the positive part (i = 1, 2, 3) consists of
vanishing at 0 symmetries with zero quasi-linear
approximation.

I The last two pages are “isomorphic” to g2 in terms of Tanaka
prolongation.
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I W (i) = a complementary space to the image of L
(i)
N (of our

choice).

I Like in all local classification problems, the first normalization
step gives the preliminary normal form

V = N + V (0) + V (1) + · · · ,
V (i) = (V1,V2) ∈W (i)

serving for all (2, 3, 5) distributions with a fixed nilpotent
approximation N .

I It is easy to compute that

W (0) = W (1) = W (2) = {0}, W (3) 6= 0.
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I W (i) = a complementary space to the image of L
(i)
N (of our

choice).

I Therefore any (2, 3, 5) distribution is diffeomorphic to

V = N + V (d≥3) + V (d+1) + · · · ,
V (i) = (V1,V2) ∈W (i), V (d) 6= 0.

or to its nilpotent approximation N .

I Proposition. An analytic distribution is flat if and only if it is
formally diffeomorphic to N .

I Proposition. d ≥ 3 is an invariant of a non-flat distribution
(I call it degree of non-flatness).

I Proposition. V (d≥3) modulo action of quasi-linear symmetries
of N is invariant. I call generalized Cartan invariant.

I Claim. If d = 3 then the generalized Cartan invariant is
exactly the Cartan invariant at 0 ∈ R5.



I W (i) = a complementary space to the image of L
(i)
N (of our

choice).

I Therefore any (2, 3, 5) distribution is diffeomorphic to

V = N + V (d≥3) + V (d+1) + · · · ,
V (i) = (V1,V2) ∈W (i), V (d) 6= 0.

or to its nilpotent approximation N .

I Proposition. An analytic distribution is flat if and only if it is
formally diffeomorphic to N .

I Proposition. d ≥ 3 is an invariant of a non-flat distribution
(I call it degree of non-flatness).

I Proposition. V (d≥3) modulo action of quasi-linear symmetries
of N is invariant. I call generalized Cartan invariant.

I Claim. If d = 3 then the generalized Cartan invariant is
exactly the Cartan invariant at 0 ∈ R5.



I W (i) = a complementary space to the image of L
(i)
N (of our

choice).

I Therefore any (2, 3, 5) distribution is diffeomorphic to

V = N + V (d≥3) + V (d+1) + · · · ,
V (i) = (V1,V2) ∈W (i), V (d) 6= 0.

or to its nilpotent approximation N .

I Proposition. An analytic distribution is flat if and only if it is
formally diffeomorphic to N .

I Proposition. d ≥ 3 is an invariant of a non-flat distribution
(I call it degree of non-flatness).

I Proposition. V (d≥3) modulo action of quasi-linear symmetries
of N is invariant. I call generalized Cartan invariant.

I Claim. If d = 3 then the generalized Cartan invariant is
exactly the Cartan invariant at 0 ∈ R5.



I W (i) = a complementary space to the image of L
(i)
N (of our

choice).

I Therefore any (2, 3, 5) distribution is diffeomorphic to

V = N + V (d≥3) + V (d+1) + · · · ,
V (i) = (V1,V2) ∈W (i), V (d) 6= 0.

or to its nilpotent approximation N .

I Proposition. An analytic distribution is flat if and only if it is
formally diffeomorphic to N .

I Proposition. d ≥ 3 is an invariant of a non-flat distribution
(I call it degree of non-flatness).

I Proposition. V (d≥3) modulo action of quasi-linear symmetries
of N is invariant. I call generalized Cartan invariant.

I Claim. If d = 3 then the generalized Cartan invariant is
exactly the Cartan invariant at 0 ∈ R5.



I W (i) = a complementary space to the image of L
(i)
N (of our

choice).

I Therefore any (2, 3, 5) distribution is diffeomorphic to

V = N + V (d≥3) + V (d+1) + · · · ,
V (i) = (V1,V2) ∈W (i), V (d) 6= 0.

or to its nilpotent approximation N .

I Proposition. An analytic distribution is flat if and only if it is
formally diffeomorphic to N .

I Proposition. d ≥ 3 is an invariant of a non-flat distribution
(I call it degree of non-flatness).

I Proposition. V (d≥3) modulo action of quasi-linear symmetries
of N is invariant. I call generalized Cartan invariant.

I Claim. If d = 3 then the generalized Cartan invariant is
exactly the Cartan invariant at 0 ∈ R5.



I W (i) = a complementary space to the image of L
(i)
N (of our

choice).

I Therefore any (2, 3, 5) distribution is diffeomorphic to

V = N + V (d≥3) + V (d+1) + · · · ,
V (i) = (V1,V2) ∈W (i), V (d) 6= 0.

or to its nilpotent approximation N .

I Proposition. An analytic distribution is flat if and only if it is
formally diffeomorphic to N .

I Proposition. d ≥ 3 is an invariant of a non-flat distribution
(I call it degree of non-flatness).

I Proposition. V (d≥3) modulo action of quasi-linear symmetries
of N is invariant. I call generalized Cartan invariant.

I Claim. If d = 3 then the generalized Cartan invariant is
exactly the Cartan invariant at 0 ∈ R5.



I W (i) = a complementary space to the image of L
(i)
N (of our

choice).

I Finding W reduces to finding a complementary space to the
image of the linear operator

T : (f1, f2, g) →
(
N1(f1) + g N1(f2)
N2(f1) N2(f2) + g

)
where f1, f2, g are function germs:

I if U is a complementary space to the image of T in the space
Mat2×2(x) then

{
A(x)

(
[N1, [N1,N2]]
[N2, [N1,N2]]

)
, A(x) ∈ U

}
is a complementary space to the image of LN .
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I Choice of nilpotent approximation N = span(N1,N2):

N1 =
∂

∂x1
+ x2

( ∂

∂x3
+ x1

∂

∂x4
+ x2

∂

∂x5

)
N2 =

∂

∂x2
− x1

( ∂

∂x3
+ x1

∂

∂x4
+ x2

∂

∂x5

)

I Advantage: Any quasi-linear symmetry of span(N1,N2)
(= symmetry of quasi-degree 0) is linear.

I It has the form

gQ :

(
x1

x2

)
→ Q

(
x1

x2

)
, x3 → detQ·x3,

(
x4

x5

)
→ detQ·Q

(
x4

x5

)
where Q is a non-singular 2× 2 matrix.
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I Asymptotically exact normal form

V = N + C (x)

(
x1x2 x2

2

−x2
1 −x1x2

)( ∂
∂x4
∂
∂x5

)

I Almost exact normal form: same with C (x) in the ideal
generated by the monomials

Monomials generating the ideal I Quasi-degree

x i
1x

j
2, i + j = 4 4

x i
1x

j
2x3, i + j = 3 5

x i
1x

j
2x

2
3 , i + j = 2 6

x1x3θ, x2x3θ 7

θ2 8

θ = x1x4 − x2x5
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I

V = N + C (x)

(
x1x2 x2

2

−x2
1 −x1x2

)( ∂
∂x4
∂
∂x5

)
, C (x) ∈ the ideal.

I The expansion of C (x) by quasi-homogeneous terms:

C (x) = C (d+1)(x) + C (d+2)(x) + · · · , d ≥ 3

where d is the degree of non-flatness and Cd+1(x) is the
generalized Cartan invariant.

I A quasi-linear symmetry gQ of N brings C (x) to C (gQ(x)).

I C (4)(x) = C (4)(x1, x2), therefore if d = 3 (minimal possible
degree of non-flatness) then the generalized invariant is the
classical Cartan invariant.



I

V = N + C (x)

(
x1x2 x2

2

−x2
1 −x1x2

)( ∂
∂x4
∂
∂x5

)
, C (x) ∈ the ideal.

I The expansion of C (x) by quasi-homogeneous terms:

C (x) = C (d+1)(x) + C (d+2)(x) + · · · , d ≥ 3

where d is the degree of non-flatness and Cd+1(x) is the
generalized Cartan invariant.

I A quasi-linear symmetry gQ of N brings C (x) to C (gQ(x)).

I C (4)(x) = C (4)(x1, x2), therefore if d = 3 (minimal possible
degree of non-flatness) then the generalized invariant is the
classical Cartan invariant.



I

V = N + C (x)

(
x1x2 x2

2

−x2
1 −x1x2

)( ∂
∂x4
∂
∂x5

)
, C (x) ∈ the ideal.

I The expansion of C (x) by quasi-homogeneous terms:

C (x) = C (d+1)(x) + C (d+2)(x) + · · · , d ≥ 3

where d is the degree of non-flatness and Cd+1(x) is the
generalized Cartan invariant.

I A quasi-linear symmetry gQ of N brings C (x) to C (gQ(x)).

I C (4)(x) = C (4)(x1, x2), therefore if d = 3 (minimal possible
degree of non-flatness) then the generalized invariant is the
classical Cartan invariant.



I

V = N + C (x)

(
x1x2 x2

2

−x2
1 −x1x2

)( ∂
∂x4
∂
∂x5

)
, C (x) ∈ the ideal.

I The expansion of C (x) by quasi-homogeneous terms:

C (x) = C (d+1)(x) + C (d+2)(x) + · · · , d ≥ 3

where d is the degree of non-flatness and Cd+1(x) is the
generalized Cartan invariant.

I A quasi-linear symmetry gQ of N brings C (x) to C (gQ(x)).

I C (4)(x) = C (4)(x1, x2), therefore if d = 3 (minimal possible
degree of non-flatness) then the generalized invariant is the
classical Cartan invariant.



If we replace 0 ∈ R5 by as point nearby, the Cartan tensor (defined
in this way) changes in very involved way, but its infinitesimal
change is simple. This allows to give a simple proof of Cartan
theorem that the distribution is flat if and only if the Cartan tensor
vanishes identically reducing it to Frobenius theorem.



I If b is an infinitesimal symmetry vanishing at 0 then its
quasi-linear part VA annihilates the generalized Cartan
invariant C (d+1)(x). Since C (d+1)(x) is a non-zero
polynomial, it is possible only if VA is a resonant vector field:
either one of the eigenvalues is 0 or their ratio is a negative
integer number. This is the main point for all theorems on
infinitesimal symmetries vanishing at 0.

I The proof of linearization theorems for such symmetries
follows from the second normalization step in which the
almost exact normal is “corrected” using the 5-dimensional
“positive” part of g2.
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