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Abstract—The paper is devoted to the classification of nonsingular and singular plane curve
germs with respect to the group of local diffeomorphisms preserving the foliation of the plane by
the phase curves of a fixed vector field, either nonsingular or singular. We define the multiplicity
of a pair consisting of a plane curve and a vector field and prove an analog of the Tougeron
theorem on finite determinacy. It leads, almost immediately, to a number of classification
results; a part of them is contained in the work.
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1. INTRODUCTION

All objects below are germs at 0 ∈ K
2, where K = R or K = C. They belong to a fixed category

that is either C∞, real-analytic, or holomorphic. The paper is devoted to the classification of
nonsingular and singular plane curves with respect to the group of local diffeomorphisms preserving
the foliation of K

2 by the phase curves of a fixed vector field ξ. The foliation may be either
nonsingular (ξ(0) �= 0) or singular (ξ(0) = 0). It will be denoted by (ξ) and the foliated plane by
(K2, ξ). A diffeomorphism preserving the foliation will be called a symmetry of this foliation.

Classification of curves in a foliated plane is a part of the local analysis of many objects on
2-manifolds, including differential 1-forms, affine modules of vector fields (= control systems), re-
versible vector fields (with respect to one or two involutions), and ODEs of the form A(x)ẋ = F (x),
detA(0) = 0. The volume of this paper does not allow us to present new classification results for
these objects that follow from the theorems given below; they will be published elsewhere.

Note that in the problem of classification of functions on a foliated plane there are functional
moduli even in the case of nonsingular function germs f on (K2, ∂/∂x), f(0) = 0, when the order s
of tangency between the curve {f = 0} and the x-axis is ≥ 2. In this case f can be reduced by a sym-
metry of the foliation (∂/∂x) to the classical normal form f = y+a1(y)x+ . . .+as−1(y)xs−1±xs+1,
where ai(0) = 0. It is worth noting that, although ai(y) are invariants up to a finite group of
transformations, this normal form is “right” only in the case when the order r of vanishing of ∂f/∂x
(the minimal r such that jr(∂f/∂x) �= 0; if a′1(0) �= 0, then r = 1) takes the maximal possible
value s, which is the case of codimension s(s− 1)/2. Whatever is s, it is easy to construct a “right”
normal form (allowing one to calculate the Poincaré series of the moduli numbers, see [1]) which is
parameterized by r functions of one variable.

As we show below, in the problem of classifying curves in a foliated plane there are no functional
moduli, even for arbitrarily deep singularities in the case of singular curves and singular foliations.

The case of nonsingular curves and nonsingular foliations is a trivial part of this problem. Take
local coordinates in which the foliation is (∂/∂x) and a curve is transversal to the y-axis, i.e., can be
described by the equation y = f(x). If it has a finite order of tangency µ ≥ 0 with the x-axis, then
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f(x) = xµ+1g(x), g(0) �= 0, and a suitable symmetry of the foliation of the form (x, y) → (φ(x),±y)
brings the curve to {y = xµ+1}. Therefore, one has the following well-known theorem.

Theorem. All nonsingular curves in the foliated plane (K2, ξ), ξ(0) �= 0, that have the same
finite order of tangency µ ≥ 0 with the phase curve of the vector field ξ passing through 0 are equiv-
alent with respect to the action of the group of symmetries of the foliation (to the curve {y = xµ+1}
if ξ = ∂/∂x).

In Section 2 we introduce the multiplicity of a pair consisting of a plane curve and a vector field,
and in Section 3 we present an analog of the classical Tougeron theorem on the finite determinacy of
a function germ. It allows us to classify arbitrary singularities of curves in (K2, ξ) for any fixed vector
field ξ, which is illustrated by almost immediate corollaries in the case of nonsingular curves and a
singular foliation (Section 4), in the case of singular curves and a nonsingular foliation (Section 5),
and in the case of singular curves and a singular foliation (Section 6). The results of these sections
can be continued in various directions.

As one can expect, we deal with a slightly wider class of objects than the plane curve, namely,
with 1-generated ideals (f), f(0) = 0, in the ring of function germs on K

2. Such an ideal can be
identified with the set of points γ = {f = 0} if the function germ f has the property of zeros: any
function vanishing at the points of γ belongs to the ideal generated by f . The identification means
that the sets {f = 0} and {f̃ = 0} coincide if and only if (f) = (f̃). In order to simplify the
exposition, we will use the following convention.

Convention. In what follows a plane curve is a 1-generated ideal (f), f(0) = 0, in the ring of
function germs on K

2. The curve (f) is nonsingular if df(0) �= 0 and singular if df(0) = 0. If f has
the property of zeros, in particular if df(0) �= 0, we will use, without mentioning, the identification
(f) ⇔ {f = 0} in all statements involving geometric characteristics (the order of tangency, strata
of a curve, etc.).1

2. MULTIPLICITY OF A PAIR {PLANE CURVE, VECTOR FIELD}
By F we denote the ring of function germs f : (K2, 0) → K. An ideal in F generated by functions

f1, . . . , fs will be denoted by (f1, . . . , fs). Given a vector field ξ and f ∈ F , by ξ(f) we denote the
Lie derivative of f along ξ.

Definition 2.1. The multiplicity of a pair consisting of a plane curve (f) and a vector field ξ
on K

2, or the ξ-multiplicity of a curve (f), is the dimension of the space F/(f, ξ(f)). It will be
denoted by µ((f), ξ).

The multiplicity is well defined: if (f̃) = (f), then f̃ = Hf , H(0) �= 0, and consequently
(f̃ , ξ(f̃)) = (Hf, ξ(H)f + Hξ(f)) = (f, ξ(f)).

Proposition 2.2. Let ξ be a vector field on K
2 which is either nonsingular or with an alge-

braically isolated singularity at 0. Any two plane curves that can be brought to each other by a
symmetry of the foliation (ξ) have the same ξ-multiplicity.

Proof. We use the following division property: if a vector field ξ satisfies the assumption of
Proposition 2.2 and ξ ∧ ξ̃ ≡ 0, then ξ̃ = Qξ for some function Q. (The proof of much more
general division properties can be found, for example, in [6].) It follows that any symmetry of the
foliation (ξ) preserves the vector field ξ up to multiplication by a nonvanishing function. Therefore,
any symmetry of (ξ) that brings an ideal (f) to an ideal (f̃) brings the ideal (f, ξ(f)) to the ideal
(f̃ , ξ(f̃)).

1In fact, the assumptions of our theorems imply that f has a finite multiplicity. In the holomorphic category any
such function germ has the property of zeros. In the C∞ and real-analytic categories the property of zeros of a
function germ f of finite multiplicity is violated only in the case {f = 0} = {0}, for example, f = x2 + y2k.
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Example 2.3. µ((f), ξ) = 0 if and only if the curve (f) is nonsingular, the vector field ξ is
nonsingular, and ξ is transversal to (f).

Example 2.4. The multiplicity of a pair consisting of a nonsingular curve (f) and a nonsingu-
lar vector field coincides with the order of tangency between (f) and the phase curve of the vector
field passing through 0.

This follows from the theorem in the Introduction: it suffices to calculate µ((y−xrg(x)), ∂/∂x) =
dimF/(y, xr−1) = r − 1, provided g(0) �= 0.

Example 2.5. The curves (x2 − y4), (y2 − x4), and (y2 + x2y) are diffeomorphic. Their
∂/∂x-multiplicities are equal to 4, 6, and ∞, respectively.

Example 2.6. Let (f) be a nonsingular plane curve and let ξ be a singular vector field. Then
(f) has ξ-multiplicity ≥ 2 if and only if the restriction of the function ξ(f) to the curve (f) has zero
1-jet. This is equivalent to the condition j1(ξ(f)) = λj1f , λ ∈ K, which means that the tangent
line to the curve (f) is an eigenline of the linear approximation of ξ. This proves the following
statement.

Proposition 2.7. A pair consisting of a nonsingular curve and a singular vector field has the
minimal possible multiplicity 1 if and only if the curve is transversal to any eigenvector of the linear
approximation of the vector field.

If K = R and the eigenvalues of ξ are not real, then any nonsingular curve has ξ-multiplicity 1.
Proposition 2.7 implies that a generic nonsingular curve has ξ-multiplicity 1 unless the matrix of
the linear approximation of ξ is scalar, i.e., has the form λI, λ ∈ K. In the latter case any curve
has ξ-multiplicity ≥ 2.

Example 2.8. Let ξ = ξ1∂/∂x + ξ2∂/∂y be a vector field with a nilpotent singularity at 0 of
minimal possible multiplicity 2. This means that ξ has a nonzero linear approximation with zero
eigenvalues and dimF/(ξ1, ξ2) = 2.

Proposition 2.9. Let ξ be a vector field with a nilpotent singularity at 0 of multiplicity 2.
Then the ξ-multiplicity of any nonsingular curve is either 1 or 2.

The case when a vector field has a nilpotent singularity of multiplicity ≥ 3 is fundamentally
different (see Subsection 4.3).

Proof. In suitable coordinates the 2-jet of ξ has the form y∂/∂x + (ax2 + bxy)∂/∂y, where
a �= 0 (see, for example, [2]). Let (f) be a nonsingular curve. If (f) is transversal to the x-axis,
then its ξ-multiplicity is equal to 1 (see Proposition 2.7). If (f) is tangent to the x-axis, then we
may assume that f(x, y) = y − g(x), where g(0) = g′(0) = 0. The ideal (f, ξ(f)) has the form
(y+ . . . , ax2 + . . .). Since a �= 0, it is diffeomorphic to (y, x2) and consequently dimF/(f, ξ(f)) = 2.

Example 2.10. Let (f) be a curve in C
2 with the Morse (A1) singularity and let ξ be a singular

vector field. Take coordinates in which f = xy and (aij) is the matrix of the linear approximation
of ξ. Then (f, ξ(f)) = (xy, a21x

2 + a12y
2 + . . .). It follows that µ((f), ξ) ≥ 4, and µ((f), ξ) = 4 if

and only if a21 �= 0 and a12 �= 0, which means that each of the strata of the curve (f) is transversal
to each of the eigenlines of the linear approximation of ξ.

3. THEOREM ON FINITE DETERMINACY

Definition 3.1. Let ξ be a vector field on K
2. A plane curve (f) is called k-determined with

respect to the group of symmetries of the foliation (ξ) if for any function g with zero k-jet there
exists a symmetry of (ξ) bringing (f + g) to (f).

Example 3.2. If (f) is a nonsingular curve, ξ is a nonsingular vector field, and µ((f), ξ) =
µ < ∞, then (f) is (µ + 1)-determined with respect to the group of symmetries of (ξ) and is not
µ-determined (see the theorem in the Introduction and Example 2.4).
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Theorem A. Let (f) be any plane curve and ξ be any vector field on K
2 such that at least

one of them is singular and µ((f), ξ) = µ < ∞. Then (f) is µ-determined with respect to the group
of symmetries of the foliation (ξ).

In the case ξ(0) = 0 Theorem A is tied with Theorem B below. In what follows by a continuous
(respectively, C1) path of functions, diffeomorphisms, etc., we mean a family of the corresponding
objects parameterized by t ∈ [0, 1] that is continuous (respectively, continuously differentiable) with
respect to the parameter t.

Theorem B. Let ξ be a singular vector field on K
2 and let ft be a C1-path of functions with

the same (µ − 1)-jet such that the curves (ft) have the same ξ-multiplicity µ < ∞. Then there
exists a path of symmetries of the foliation (ξ) that brings (ft) to (f0).

Theorems A and B are proved in Section 7. In the case of nonsingular curves and singular
foliations these theorems lead to final classification results. To obtain final normal forms in the case
of singular curves, one should combine Theorem A with a theorem formulated in Section 5.

4. THE CASE OF NONSINGULAR CURVES AND SINGULAR FOLIATIONS

Throughout this section ξ is a singular vector field on K
2. By λ1 and λ2 we denote the eigenvalues

of the linearization of ξ.

4.1. Nonsingular curves of ξ-multiplicity 1. Recall from Example 2.6 that such curves
exist (and are generic) if and only if the matrix of the linear approximation of ξ is not of the form
λI, λ ∈ K.

Theorem 4.1. Let ξ(0) = 0. In the holomorphic category any two nonsingular plane curves
of multiplicity 1 can be brought to each other by a symmetry of the foliation (ξ). The same holds
in the C∞ and real-analytic categories if λ1 and λ2 are not real or λ1 = λ2. If λ1 and λ2 are real
and distinct, then any nonsingular curve of ξ-multiplicity 1 can be brought by a symmetry of (ξ)
to one of the curves (y ± x), where (x, y) are any coordinates such that j1ξ = λ1x∂/∂x + λ2y∂/∂y.

Remarks. 1. This theorem is also a corollary of the results obtained in [5]. In fact, the results
in [5] imply a much stronger statement: in the holomorphic category not only all nonsingular curves
of ξ-multiplicity 1 but also all involutions whose sets of fixed points are such curves can be brought
to each other by a symmetry of the foliation (ξ).

2. Whether or not ± can be reduced to + in the normal form (y ± x) (if K = R) depends on
the discrete part of the group of local symmetries of the foliation (ξ). For example, it is clear that
± can be reduced to + if the vector field ξ is linearizable. One of examples in which ± cannot be
reduced to + is the resonant node singularity ξ = x∂/∂x + (Ny + xN )∂/∂y, where N is an odd
integer ≥ 3.

4.2. An elementary singular point: (λ1, λ2) �= (0, 0).
Theorem 4.2. Let ξ be a singular vector field on K

2 such that (λ1, λ2) �= (0, 0). Any C1-
path (ft) of nonsingular plane curves of the same finite ξ-multiplicity can be brought to (f0) by a
path of symmetries of the foliation (ξ).

In the case µ = 1 this theorem is a direct corollary of Theorem B. To prove Theorem 4.2 and to
obtain normal forms for nonsingular curves in the case µ ≥ 2, we will use the simplest classically
known normal forms for vector fields (see, for example, [2]). First we consider the case

(λ1, λ2) �= (0, 0), λ1/λ2, λ2/λ1 /∈ {1, 2, 3, . . .}. (4.1)

In this case any finite jet of ξ has in suitable coordinates the form

xa(x, y)
∂

∂x
+ yb(x, y)

∂

∂y
, a(0) = λ1, b(0) = λ2. (4.2)
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Consider curves of the form

γx,r = (f) = (y − cxr + h.o.t.), γy,r = (g) = (x − cyr + h.o.t.), c �= 0. (4.3)

Lemma 4.3. Given a singular vector field ξ with eigenvalues satisfying (4.1), fix coordinates
such that the r-jet of ξ has the form (4.2). Any curve of the form γx,r or γy,r has ξ-multiplicity r.

Proof. The restriction of the function ξ(f) (respectively, ξ(g)) to the curve γx,r (respectively,
γy,r) has the form δxr + h.o.t. (respectively, δyr + h.o.t.), where δ = c(λ2 − rλ1) (respectively,
δ = c(λ1 − rλ2)). By (4.1) one has δ �= 0, which implies the lemma.

Lemma 4.3 and Theorem B imply the following statement.
Theorem 4.4. Let ξ be a singular vector field with eigenvalues satisfying (4.1). Let µ ≥ 2.

Take a coordinate system in which the µ-jet of ξ has form (4.2). A nonsingular curve has ξ-multi-
plicity µ if and only if it has tangency of order µ− 1 with either the x-axis or the y-axis. Any such
curve can be brought by a symmetry of the foliation (ξ) to one of the curves (y ± xµ) or (x ± yµ)
(± ↪→ + if K = C).

Consider now the case

λ1/λ2 = N or λ2/λ1 = N, N ∈ {1, 2, 3, . . .}, (4.4)

which means that ξ has a singularity of the resonant node type. In this case in suitable coordinates
ξ has either the form

λx
∂

∂x
+

(
Nλy + xN

) ∂

∂y
, λ �= 0, N ∈ {1, 2, 3, . . .}, (4.5)

corresponding to the generic (within resonant nodes) case when ξ is not linearizable (diagonalizable
if N = 1), or the form

λx
∂

∂x
+ Nλy

∂

∂y
, λ �= 0, N ∈ {1, 2, 3, . . .}. (4.6)

Consider curves (4.3). Calculating the ξ-multiplicity in the same way as in the proof of Lemma 4.3,
it is easy to prove the following statement.

Lemma 4.5. In case (4.5) any curve of the form γy,r, r ≥ 1, and any curve of the form γx,r,
r < N, has ξ-multiplicity r; all curves of the form γx,r, r ≥ N, and the curve γx,∞ = (y) have
ξ-multiplicity N . In case (4.6) with N ≥ 2 any curve of the form γy,r, r ≥ 1, and any curve of the
form γx,r, r �= N, has ξ-multiplicity r.

In case (4.6) the ξ-multiplicity of a curve of the form γx,N depends on the higher order terms.
In this case we have the following obvious lemma.

Lemma 4.6. In case (4.6) any transformation of the form (x, y) → (x, y+αxN ) is a symmetry
of the vector field ξ, and a suitable transformation of this form brings any curve of the form γx,N

to a curve of the form (y + xN+1g(x)).
Lemmas 4.5, 4.6 and Theorem B imply the following classification.
Theorem 4.7. Let ξ be a vector field of the form (4.5) or (4.6). A nonsingular curve has

ξ-multiplicity µ ≥ 2 if and only if it satisfies the condition given in the corresponding cell of the
table below. All such curves can be brought by a symmetry of the foliation (ξ) to one of the curves
given in the same cell.

Remarks. 1. Theorem 4.7 and Theorem 4.4 for the case of finitely determined vector fields
also follow from (rather involved) classification tables in [4].

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 259 2007



286 M. ZHITOMIRSKII

Classification of nonsingular curves in (K2, ξ); cases (4.5) and (4.6)

Case 2 ≤ µ < N µ = N ≥ 2 µ > N

(4.5) Tangency of order µ − 1 with
one of the axes x or y

Tangency of order N − 1 with
the y-axis or tangency of order
≥N − 1 with the x-axis

Tangency of order µ − 1 with
the y-axis

(y ± xµ), (x ± yµ) (x ± yN ), (y) (x ± yµ)

(4.6) Tangency of order µ − 1 with
one of the axes x or y

Tangency of order N − 1 with
the y-axis

Tangency of order µ − 1 with
one of the axes x or y

(y + xµ), (x + yµ) (x + yN) (y + xµ), (x + yµ)

2. Of course, in the holomorphic category all ± can be replaced by +. It is easy to prove that
if K = R, then in case (4.5) one can replace ± by + in the normal form (x ± yµ) (respectively,
(y ± xµ)) if and only if the number Nµ (respectively, N + µ + 1) is even.

Proof of Theorem 4.2. If µ = 1, then Theorem 4.2 is a direct corollary of Theorem B. If
µ ≥ 2, then Theorem 4.2 follows from Theorem B and Lemmas 4.3, 4.5, and 4.6. In fact, let γt

be a C1-path of nonsingular curves of the same ξ-multiplicity µ ≥ 2. Lemmas 4.3 and 4.5 imply
that the curves γt can be described by functions with the same (µ− 1)-jet unless one has case (4.6)
with µ = N . In the latter case Lemma 4.6 implies that there exists a C1-path of symmetries of ξ
reducing the path γt to a path of curves with the same (N − 1)-jet.

4.3. The case of nilpotent linear approximation. Consider now the case λ1 = λ2 = 0,
j1ξ �= 0, i.e., ξ has a nilpotent singularity at 0. The Taylor series of ξ can be reduced by a change
of coordinates to the form

y
∂

∂x
+

(
(a2x

2 + a3x
3 + . . .) + y(b1x + b2x

2 + . . .)
) ∂

∂y
(4.7)

(see [2]). In what follows, distinguishing or normalizing curves of ξ-multiplicity µ, we use any
coordinate system in which the µ-jet of ξ has this normal form. Propositions 2.7 and 2.9 and
Theorem A imply

Theorem 4.8. If a2 �= 0, then any nonsingular curve has ξ-multiplicity 1 or 2 and can be
reduced by a symmetry of (ξ) to one of the curves (x) or (y).

The case a2 = 0 is different. The case of ξ-multiplicity 1 is completely covered by Proposition 2.7
and Theorem 4.1: it holds if and only if the curve is transversal to the x-axis and if and only if it
can be brought by a symmetry of the foliation to the curve (x). Consider a nonsingular curve of
ξ-multiplicity > 1. It has the form

(y − α2x
2 − α3x

3 − . . .). (4.8)

It is easy to calculate that the ξ-multiplicity of this curve depends on the numbers

θ3 = a3 + α2(b1 − 2α2), θm = am +
m−2∑
i=1

(
bi − (i + 1)αi+1

)
αm−i, m ≥ 4.

Proposition 4.9. Let a2 = 0. The ξ-multiplicity of the curve (4.8) is greater than or equal
to 3. It is equal to 3 if θ3 �= 0, and it is equal to µ ≥ 4 if θ3 = . . . = θµ−1 = 0 and θµ �= 0.

Note that if we fix α2 such that θ3 = 0, i.e., α2 is a root of the polynomial

P (α) = a3 + b1α − 2α2,
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then the conditions θ4 = θ5 = . . . = 0 define unique values of α3, α4, . . . , provided that α2 �=
b1/(i + 1), i = 4, . . . ,m. Such numbers are not the roots of P (α) if

(m + 1)2a3 + (m − 1)b2
1 �= 0, m ∈ {4, 5, 6, . . .}. (4.9)

We obtain the following corollary of Proposition 4.9 and Theorem B.

Theorem 4.10. Let a2 = 0 and let a3 and b1 satisfy (4.9). Consider a nonsingular curve of
ξ-multiplicity µ.

1. In the holomorphic category the realizable values for µ are {1, 3, 4, 5, . . . ,∞}. The same holds
if K = R provided that b2

1 + 8a3 ≥ 0. If K = R and b2
1 + 8a3 < 0, then the realizable values for µ

are 1 and 3 only.2

2. The case µ = 3 holds if and only if the curve can be reduced by a symmetry of (ξ) to the
normal form (y − rx2), where r is not a root of the polynomial P (α).

3. The case 4 ≤ µ < ∞ holds if and only if the curve can be reduced by a symmetry of (ξ) to
the normal form (y − α∗

2x
2 − α∗

3x
3 − . . . − α∗

µ−2x
µ−2 − rxµ−1), where α∗

2 is one of the roots of the
polynomial P (α), α∗

3, . . . , α
∗
µ−2 are uniquely defined by α∗

2 and the conditions θ4 = . . . = θµ−1 = 0,
and r is a parameter such that θµ �= 0.

The case when condition (4.9) is violated can also be analyzed. Consider, for example, the case
a2 = a3 = b1 = 0, a4 �= 0. In this case θ3 = −2α2

2 and θ4 = a4 + b2α2 − 5α2α3. Therefore, θ3 = 0 if
and only if α2 = 0, and the case θ3 = θ4 = 0 is impossible. We obtain the following result.

Theorem 4.11. In the case a2 = a3 = b1 = 0, a4 �= 0 the ξ-multiplicity of any nonsingular
curve is either 1, 3, or 4. It is equal to 3 (respectively, 4) if and only if the curve can be brought by
a symmetry of the foliation (ξ) to the normal form (y − rx2), r �= 0 (respectively, (y − rx3)).

One can prove that in all the normal forms obtained the parameter r is a modulus under certain
genericity assumptions on some nonfixed parameters in (4.7).

4.4. The case when a vector field has zero 1-jet. Consider a singular vector field of the
form

ξ =
(
Pm(x, y) + . . .

) ∂

∂x
+

(
Qm(x, y) + . . .

) ∂

∂y
, m ≥ 2, (4.10)

where Pm and Qm are homogeneous degree m polynomials and the dots denote functions with the
zero m-jet. It is clear that the ξ-multiplicity of any nonsingular curve (ax + by + . . .) is ≥m, and it
is easy to show that the ξ-multiplicity equals m if and only if the straight line {ax + by = 0} is not
an invariant line of the homogeneous vector field Pm(x, y)∂/∂x + Qm(x, y)∂/∂y, i.e., aPm(b,−a) +
bQm(b,−a) �= 0. Note that if yPm(x, y) − xQm(x, y) �≡ 0, then this homogeneous vector field has
not more than m + 1 invariant straight lines, and consequently a generic nonsingular curve has
ξ-multiplicity m. By Theorem B we obtain the following result.

Theorem 4.12. Let m ≥ 2 and let ξ be a vector field with the m-jet Pm(x, y)∂/∂x +
Qm(x, y)∂/∂y, where Pm and Qm are homogeneous degree m polynomials. Any curve (f) =
(ax + by + . . .) such that aPm(b,−a) + bQm(b,−a) �= 0 can be brought by a symmetry of the
foliation (ξ) to the curve (jm−1f).

2We see that the analysis of realizable values of the ξ-multiplicity of nonsingular curves can be used for distinguish-
ing different types of phase portraits. The condition D = b2

1 + 8a3 ≥ 0 can be expressed in terms of the blow-up
(x, y) → (x2, y) of the vector field y∂/∂x + (a3x

3 + b1xy)∂/∂y, which gives xV , V = 2y∂/∂x + (a3x + b1y)∂/∂y.
The linear vector field V has real eigenvalues if and only if D ≥ 0. A nonsingular curve tangent to the x-axis has
the minimal possible ξ-multiplicity 3 if and only if it is transversal to the eigenvectors of V .
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In particular, if m = 2 and yP2(x, y) − xQ2(x, y) �≡ 0, then a generic nonsingular curve can be
brought by a symmetry of (ξ) to the normal form (cos θx + sin θy). It is clear that if P2 and Q2

are generic, then there are no linear transformations, except the identity, preserving the vector field
P2∂/∂x+Q2∂/∂y up to multiplication by a number, and then the parameter θ ∈ S1 is an invariant.

5. THE CASE OF SINGULAR CURVES AND NONSINGULAR FOLIATIONS

Using Theorem A it is easy to determine and classify all simple singular curves in a plane
endowed with a nonsingular foliation.

Definition 5.1. Let ξ be a nonsingular vector field on K
2. A curve in the foliated plane (K2, ξ)

is simple if the pair consisting of this curve and the foliation (ξ) is simple with respect to the action
of the group of diffeomorphisms (K2, 0) → (K2, 0).

We use the standard notation Ak for the class of functions that are R-equivalent to x2 ± yk+1,
as well as for curves (f), f ∈ Ak.

Theorem 5.2. A singular curve (f) in a foliated plane (K2, ξ), ξ(0) �= 0, of ξ-multiplicity µ
is simple if and only if it satisfies one of the following conditions:

(a) f ∈ A1, µ < ∞;
(b) f ∈ A2;

(c) f ∈ Ak, k ≥ 3, µ = k + 1.

Take coordinates (x, y) such that ξ = ∂/∂x. Any curve satisfying one of these conditions can be
reduced by a symmetry of the foliation (∂/∂x) to one of the curves

Ak
1 = (xy + xk), Ak+1

k = (x2 ± yk+1), A4
2 = (y2 + x3), k ≥ 2,

where the upper index in the notation of the normal forms is the ∂/∂x-multiplicity.
If K = C or if k is even, then ± should be replaced by +. By Theorem 5.2 the ξ-multiplicity of

any curve of the class A2 is either 3 or 4. This statement is a part of the following statement.
Theorem 5.3. The multiplicity of a pair consisting of a curve of the class Ak and a nonsingular

vector field is not less than k + 1. If k is an even number, then it is not greater than 2k. It may
be arbitrarily large (including ∞) if k is odd.

Theorems 5.2 and 5.3 are proved below. The hierarchy of A-singularities in a plane endowed
with a nonsingular foliation starts with

(A2
1)

0 (A3
2)

1 (A4
3)

2 (A5
4)

3 . . .

(A3
1)

1 (A4
2)

2 (A6
3)

3 (A7
4)

4 . . .

(A4
1)

2 (A7
3)

4

(A5
1)

3 (A8
3)

5

. . . . . .

Here Ak+1
k , Ak

1 , and A4
2 are the simple singularities determined in Theorem 5.2 (they are marked

by bold face), and the other singularities are unimodal3 and as follows (in the coordinates x, y such
3I classified all unimodal A-singularities; the diagram contains not all of them.
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that the foliation is (∂/∂x); the case K = C):

A6
3 = (y2 + x2y + rx4), r /∈ {0, 1/4};

Ak+2
3 = (y2 + x2y + xk), k ∈ {5, 6, 7, . . .};

Ak+2
k−1 = ((y + x2)2 + xk), k ∈ {5, 6, 7, . . .}.

The parameter r in A6
3 is a modulus. The diagram contains all singularities that are irremovable

in 4-parameter families of curves. It shows all adjacencies between the presented singularities. The
index k in the notation (Aµ

k)c means that the singularity belongs to the class Ak (with respect to
the group of all diffeomorphisms); µ is the ∂/∂x-multiplicity; and c is the codimension, i.e., the
minimal number c of parameters such that the singularity is irremovable in c-parameter families of
curves.

Proof of Theorem 5.3. We may assume that ξ = ∂/∂x. Consider a curve (f) = (ax2 + bxy +
cy2 + . . .) ∈ Ak. If a �= 0, then the curve can be reduced to x2 ± yk+1 by a local diffeomorphism
(x, y) → (Φ(x, y), φ(y)), which preserves (∂/∂x). The ∂/∂x-multiplicity of this curve is equal to
k+1. Therefore, the first statement holds for generic and consequently for all curves in the class Ak.

To prove the second statement, consider the case a = 0. Then b = 0 (otherwise the curve
belongs to the class A1) and c �= 0. We may assume c = 1. Then on the level of Taylor series
(f) = (y2+g0(x)+g1(x)y). A curve of this form is diffeomorphic to the curve (y2+g0(x)−g2

1(x)/4).
If it belongs to a class A2�, then j2�+1g0 �= 0. It follows that the ∂/∂x-multiplicity of any curve of
the class A2� is not greater than the ∂/∂x-multiplicity of the curves (y2 + x2�+1 + h.o.t.). All such
curves have the same ∂/∂x-multiplicity dimF/(y2, x2�) = 4
.

To prove the last statement, consider the curve (y2 + xy� + xp), where p ≥ 2
 + 1. It belongs to
the class A2�+1, and its ∂/∂x-multiplicity tends to ∞ as p → ∞. The curve (y2 + xy�) belongs to
the class A2�+1 and has infinite ∂/∂x-multiplicity.

Proof of Theorem 5.2. We may assume that ξ = ∂/∂x. Theorem 5.2 is a corollary of the
following statements.

1. If j2f = 0, then the curve (f) is not simple. In fact, the dimension of the space of homogeneous
degree 3 polynomials is equal to 4, whereas the dimension of the group of linear transformations
preserving the x-axis is equal to 3.

2. It is clear that a curve of the class Ak of the form (x2 + bxy + cy2 + h.o.t.) can be reduced to
the curve (x2 ± yk+1) by a local diffeomorphism (x, y) → (Φ(x, y), φ(y)), which preserves (∂/∂x).
The ∂/∂x-multiplicity of this curve equals k + 1.

3. A curve of the form (f) = (xy + cy2 + h.o.t.) belongs to the class A1. The Taylor series
of such a curve can be reduced by a change of coordinates of the form (x, y) → (Φ(x, y), y) to the
form (xy + g(x)). The ideal (xy + g(x), y + g′(x)) is diffeomorphic to the ideal (y, g(x)−xg′(x)). It
follows that g(x) = xµg̃(x), g̃(0) �= 0. By Theorem A the curve (f) can be reduced by a symmetry
of (∂/∂x) to the curve (xy + cxµ), c �= 0. The parameter c can be scaled to 1.

4. Let (f) = (y2 +h.o.t.). Then on the level of Taylor series one has (f) = (y2 +g0(x)+g1(x)y).
We will need the following representation for the 4-jet:

(f) = (y2 + a1x
3 + b1x

2y + a2x
4 + b2x

3y + h.o.t.). (5.1)

If a1 �= 0, then a1 can be scaled to 1 and b1, a2, and b2 can be reduced to 0 by a change of coordinates
of the form (x, y) → (Φ(x, y), y). The curve (y2 + x3) has ∂/∂x-multiplicity 4. Therefore, by
Theorem A the curve (f) can be reduced to (y2 + x3) by a symmetry of (∂/∂x).
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5. Assume now that in (5.1) one has a1 = 0 and b1 �= 0. Then b1 can be reduced to 1 and a2 to 0.
In the obtained normal form (y2 + x2y + rx4 + h.o.t.) the parameter r is a modulus not only with
respect to the group of symmetries of (∂/∂x) but also with respect to the group of diffeomorphisms
preserving the x-axis. It is the same as the modulus in the normal form J10 for function germs, i.e.,
the modulus in the classification of the 2-jets of triples consisting of a nonsingular curve and two
parabolas ({y + rix

2 = 0}, r1,2 = 1/2 ±
√

1/4 − r) tangent to this curve.
To classify singular curves in (K2, ξ), ξ(0) �= 0, of modality ≥ 1, one should combine Theorem A

with the following theorem.
Theorem C. Let f and g be function germs on K

2 such that jk−1g = 0. Let ξ be a vector
field on K

2. Assume that there exist functions h1 and h2 such that

h1(0) = 0, j1(h2ξ) = 0, jk(h1f + h2ξ(f) + g) = 0.

Then there exists a symmetry of the foliation (ξ) bringing the curve (f + g) to a curve of the form
(f + g̃ ), where jkg̃ = 0.

This theorem is proved in Section 7, along with Theorems A and B. We also need it for classifying
singular curves in a plane endowed with a singular foliation.

6. THE CASE OF SINGULAR CURVES AND SINGULAR FOLIATIONS

We present two examples for singular curves in (C2, ξ), ξ(0) = 0. In the first example the curves
belong to the class A1, and we restrict ourselves to the case when the eigenvalues λ1 and λ2 of the
linearization of ξ satisfy the condition

(λ1, λ2) �= (0, 0), λ1/λ2, λ2/λ1 /∈ {1, 2, 3, 4, . . .}. (6.1)

In the second example the curves belong to the class A2, and

λ1 �= λ2, λ1/λ2, λ2/λ1 �= 3/2. (6.2)

Note that it is clear a priori that precisely these constraints on the eigenvalues simplify the classifi-
cation.

Theorem 6.1. Let ξ be a singular vector field on C
2 whose eigenvalues satisfy (6.1). Any

curve (f) in C
2 of the class A1 has ξ-multiplicity µ ≥ 4. If µ < ∞, then it can be reduced by a

symmetry of the foliation (ξ) to one of the curves

(x2 + y2) (µ = 4); (xy + xn + rym), r �= 0 (µ = m + n + 2 ≥ 4),

where (x, y) is a coordinate system in which jµξ = xf1(x, y)∂/∂x + yf2(x, y)∂/∂y.
Remark. Under condition (6.1) the required coordinate system exists for any µ (see [2]). In the

second normal form in the generic case (n,m) = (2, 2) the parameter r is a modulus. If n + m ≥ 5,
then r can be reduced to 1 under certain conditions on ξ. The simplest sufficient condition for
this reduction is the case when ξ is linearizable. If ξ is a finitely determined vector field, then
Theorem 6.1 can also be obtained from the classification tables in [4].

Theorem 6.2. Let ξ be a singular vector field on C
2 whose eigenvalues satisfy (6.2). The

ξ-multiplicity of any curve (f) of the class A2 is either 5 or 6. Fix in this case any coordinate
system in which the 1-jet of ξ has the form λ1x∂/∂x + λ2y∂/∂y. The curve (f) can be reduced by
a symmetry of (ξ) to one of the curves

((x + y)2 + rx3), r �= 0 (if µ = 5); (x2 + rxy2 + y3), (y2 + rx2y + x3) (if µ = 6).

Remark. If ξ is linearizable, then in all these normal forms r can be reduced to 1 provided
that in the last two normal forms r �= 0.
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Proof of Theorem 6.1. Let (f) ∈ A1, f = P (x, y) + h.o.t., where P (x, y) = ax2 + bxy + cy2.
Calculate the ideal (P, ξ(P )). The assumption λ1 �= λ2 implies

(P, ξ(P )) =
(
ax2 + bxy + cy2, 2by2 + cxy + h.o.t.

)
. (6.3)

First we consider the degenerate but simple case b = 0. In this case, since P ∈ A1, one has a, c �= 0
and then (6.3) is diffeomorphic to the ideal (xy, x2 + y2). It follows that the ξ-multiplicity of (f) is
equal to 4. By Theorem C any finite jet of (f), in particular the 4-jet, can be reduced to (ax2 + cy2)
by a symmetry of (ξ). By Theorem A the whole curve (f) can be reduced to this normal form by
a symmetry of (ξ). The parameters a and c can be scaled to 1 using the flow of ξ (it has the form
(x, y) → (etλ1x, etλ2y) + h.o.t.) and the assumption λ1 �= λ2.

Now we assume b �= 0. In this case, for any homogeneous polynomial h(x, y) of degree k ≥ 3,
one has h(x, y) = α1x

k + α2y
k + jkh̃(x, y), where h̃ belongs to the ideal (6.3). (To see this in the

case c �= 0, it is enough to take the second generator of the ideal. If c = 0, then b �= 0 and it is
enough to take the first generator.) Theorem C implies that (f) can be reduced by a symmetry
of (ξ) to the form (xy + g1(x)+ g2(y)) on the level of Taylor series. Since ξ(x) ∈ (x) and ξ(y) ∈ (y),
the ξ-multiplicity of (f) is finite if and only if j∞g1 �= 0 and j∞g2 �= 0. Therefore, we have the
normal form(

xy + (anxn + an+1x
n+1 + . . .) + (bmym + bm+1y

m+1 + . . .)
)
, an �= 0, bm �= 0.

One of the parameters an or bm can be reduced to 1 using the flow of ξ and the assumptions
λ2 �= (n − 1)λ1 and λ1 �= (m − 1)λ2. Now Theorem 6.1 follows from Theorems C and A and the
following statements (each of them can be easily checked).

1. Let Q(x, y) = xy + x2 + ry2, r �= 0. The ideal (Q, ξ(Q)) is diffeomorphic to the ideal (xy,
x2 + y2) provided that λ1 �= λ2 and Q(x, y) is a nondegenerate quadratic form (cf. Example 2.10).
In this case one has (Q, ξ(Q)) ⊃ M3 and dimF/(Q, ξ(Q)) = 4, where M is the maximal ideal in
the ring of function germs.

2. Let Q(x, y) = xy + xn. Then (Q, ξ(Q)) ⊃ xMn provided that λ2 �= (n − 1)λ1. Similarly, if
Q(x, y) = xy + ym, then (Q, ξ(Q)) ⊃ yMm provided that λ1 �= (m − 1)λ2.

3. Let Q(x, y) = xy + r1x
n + r2y

m, where r1, r2 �= 0, n,m ≥ 2, and n+m ≥ 5. If λ2 �= (n−1)λ1

and λ1 �= (m − 1)λ2, then

(Q, ξ(Q)) ⊃ Mk, k = max(n,m) + 1, dimF/(Q, ξ(Q)) = n + m + 2.

Proof of Theorem 6.2. Let (f) = (S(x, y) + h.o.t.), S(x, y) = (ax + by)2. First assume
that a �= 0 and b �= 0. Since λ1 �= λ2, a and b can be reduced to 1 by the flow of ξ. One has
(S, ξ(S)) = (x + y)M. By Theorem C the curve (f) can be brought by a symmetry of (ξ) to
the form (f̃), where j3f̃ = Q = (x + y)2 + rx3. It is easy to prove that the ideal (Q, ξ(Q)) is
diffeomorphic to (xy, x2 + y3) (for any r provided λ1 �= λ2). Therefore, (Q, ξ(Q)) ⊃ M4 and
consequently (f, ξ(f)) ⊃ M4. Theorems C and A imply that (f) can be reduced to (Q) by a
symmetry of the foliation (ξ). The ξ-multiplicity of (f) is equal to dimF/(xy, x2 + y3) = 5.

The assumptions λ1/λ2 /∈ {2/3, 3/2} are essential only in the remaining cases (f) = (x2 +h.o.t.)
and (f) = (y2 + h.o.t.). We will assume (f) = (x2 + h.o.t.); the other case is symmetric. One has
(x2 + h.o.t.) = (x2 + rxy2 + r1y

3 + h.o.t.). Since f ∈ A2, it follows that r1 �= 0. The assumption
2λ1 �= 3λ2 implies that r1 can be reduced to 1 by the flow of ξ. Let T = x2 + rxy2±y3. Calculating
the ideal (T, ξ(T )), we see that under the same assumption 2λ1 �= 3λ2 it is diffeomorphic to the
ideal (x2, y3). Therefore, (T, ξ(T )) ⊃ M4 and consequently (f, ξ(f)) ⊃ M4. By Theorems C and A
the curve (f) can be reduced to (T ) by a symmetry of (ξ). The ξ-multiplicity of (f) is equal to
dimF/(x2, y3) = 6.
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7. PROOFS OF THEOREMS A–C

The homotopy method and the observation that for any vector field ξ and for any function
germ h the vector field hξ is an infinitesimal symmetry of the foliation (ξ) lead to Proposition 7.1.
Theorem C is an almost direct corollary of this proposition (Subsection 7.2). Theorems A and B
follow from Proposition 7.1 and several auxiliary statements given in Subsections 7.3 and 7.4.

7.1. The homotopy method. Given a C1-path ft ∈ F and a vector field ξ on K
2, consider

the following equation with respect to a couple of paths h1,t, h2,t ∈ F :

Wt = h1,tft + h2,tξ(ft) +
dft

dt
= 0. (7.1)

Proposition 7.1. If there exist C0-paths h1,t and h2,t such that (h2,tξ)(0) = 0 and Wt = 0
(respectively, jkWt = 0), then there exists a C1-path of symmetries of (ξ) bringing the ideal (ft) to
the ideal (f0) (respectively, to the ideal (f0 + f̃t), where jkf̃t = 0).

Proof. Define a C1-path of maps Φt : (K2, 0) → (K2, 0) and a C1-path of functions Ht by the
following system of ODEs and the initial conditions:

dΦt

dt
= (h2,tξ)(Φt), Φ0 = id,

dHt

dt
= h1,t(Φt)Ht, H0 ≡ 1. (7.2)

It is easy to prove that Φt is a local diffeomorphism for any t along the path. It moves any
point p along the phase curve of ξ containing p. Therefore, it is a symmetry of the foliation (ξ).
Differentiating the family At = Htft(Φt) with respect to t and using (7.1) and (7.2), we obtain
A′(t) ≡ 0. It follows that Htft(Φt) = f0. Since the second ODE in (7.2) is linear, Ht(0) �= 0 and
consequently (ft(Φt)) = (f0). If one has jkWt = 0 instead of (7.1), then we obtain (jkA(t))′ ≡ 0,
which implies jk(Htft(Φt)) = jkf0. In this case one has (ft(Φt)) = (f0 + f̃t), where jkf̃t = 0.

7.2. Proof of Theorem C. Let f , g, h1, and h2 be functions as in Theorem C. Let ft = f+tg.
Since jk(h1g) = jk(h2ξ(g)) = 0, the equation jkWt = 0 has a solution h1,t ≡ h1, h2,t ≡ h2 and
Theorem C follows from Proposition 7.1.

7.3. Auxiliary lemmas.
Lemma 7.2. Let I be an ideal in the ring F such that dimF/I = µ < ∞. Then I contains

any function germ with the zero (µ − 1)-jet.
A simple and nice proof can be found in [3, Section 5.5] for the case when I is the gradient ideal

of a function; in the general case the proof is exactly the same.
Lemma 7.3. Let f be a singular function germ (df(0) = 0) and let ξ be a nonsingular vector

field such that dimF/(f, ξ(f)) = µ < ∞. If jµ−1(Af + Bξ(f)) = 0 for some functions A and B,
then B(0) = 0.

Proof. Take local coordinates x, y such that ξ = ∂/∂x. Assume that B(0) �= 0. Then ∂f/∂x =
Cf +g for some functions C and g such that jµ−1g = 0. It follows that jµf = a1y+a2y

2+. . .+aµyµ.
Since df(0) = 0, we have a1 = 0. Therefore, the classes of functions 1, y, x, x2, . . . , xµ−1 in the factor
space F(f, ξ(f)) are linearly independent, and consequently the dimension of this factor space is
not less than µ + 1, a contradiction.

7.4. Auxiliary proposition. Combining Lemmas 7.2 and 7.3 with Proposition 7.1, we obtain
the following statement towards the proof of Theorems A and B.

Proposition 7.4. Let ξ be a vector field on K
2 and let ft be a C1-path of functions with the

same (µ − 1)-jet such that either dft(0) = 0 or ξ(0) = 0. Let dimF/(f0, ξ(f0)) = µ < ∞. Assume
that (

ft

ξ(ft)

)
= Mt

(
f

ξ(f)

)
(7.3)
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for some C0-path Mt of matrix-valued functions such that detMt(0) �= 0 for any t ∈ [0, 1]. Then
there exists a C1-path of diffeomorphisms preserving the foliation (ξ) and bringing the ideal (ft) to
the ideal (f0).

Proof. By Proposition 7.1 it suffices to prove the existence of C0-paths h1,t and h2,t satisfy-
ing (7.1) and such that h2,t(0) = 0 if ξ(0) �= 0. If ξ(0) �= 0, then, as we have assumed, dft(0) = 0 and
Lemma 7.3 implies that the requirement h2,t(0) = 0 is a corollary of (7.1). Since detMt(0) �= 0 and
t ∈ [0, 1], the solvability of (7.1) follows from that of the equation h̃1,tf0 + h̃2,tξ(f0) + (d/dt)ft = 0.
The solvability of this equation with respect to the C0-paths h̃1,t and h̃2,t follows from Lemma 7.2.

7.5. Proof of Theorem A. Let g ∈ F , jµg = 0, and let ft = f + tg, t ∈ [0, 1]. By
Proposition 7.4 it suffices to prove that one has (7.3) with a C0-path Mt of matrix-valued functions
such that detMt(0) �= 0. By Lemma 7.2 one has

g = h11f + h12ξ(f), ξ(g) = h21f + h22ξ(f), (7.4)

where h11(0) = h12(0) = 0 and if ξ(0) = 0, then also h21(0) = h22(0) = 0. Therefore, in the case
ξ(0) = 0 one has (7.3) with a C∞-path Mt such that Mt(0) = I. Recall that in Theorem A either
ξ(0) = 0 or df(0) = 0. In the case ξ(0) �= 0, df(0) = 0 the second relation in (7.4) and Lemma 7.3
imply h22(0) = 0. Therefore, (7.3) holds with a path Mt such that Mt(0) is a triangular nonsingular
matrix.

7.6. Proof of Theorem B. The functions ft have the same (µ − 1)-jet. Since ξ(0) = 0, the
functions ξ(ft) also have the same (µ − 1)-jet. Therefore, by Lemma 7.2 one has (7.3) with some
C0-path Mt, and consequently (ft, ξ(ft)) ⊆ (f0, ξ(f0)). It is easy to prove that these inclusions
and the assumption dimF/(ft, ξ(ft)) = dimF/(f0, ξ(f0)) < ∞ imply that the ideals (ft, ξ(ft)) and
(f0, ξ(f0)) coincide and det Mt(0) �= 0. Now Theorem B follows from Proposition 7.4.
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