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Fully simple singularities of plane and space curves

M. Zhitomirskii

Abstract

In this work we introduce the definition of fully simple singularities of parameterized curves
and explain that this definition is more natural than the definition of simple singularities. The
set of fully simple singularities is much smaller than the set of simple ones. We determine and
classify all fully simple singularities of plane and space curves, with any number of components.
Our classification results imply that any fully simple singularity of a plane or a space curve is
quasi-homogeneous (whereas there is a number of non-quasi-homogeneous simple singularities).
Another outcome of our classification results is a one-to-one correspondence between the fully
simple singularities of plane curves and the classical A-D-E singularities of functions.

1. Introduction and main results

1.1. Singularities of parameterized curves: simple and fully simple singularities

We deal with parameterized curves. In what follows by a curve in R
n we mean a map

Γ : (a, b) → Rn. All objects are assumed to be of the class C∞. The purpose of this work is
to determine and classify singularities of Γ at a point p of its image satisfying the following
condition:

C: All singularities of curves sufficiently close to Γ at points of their images sufficiently close
to p are exhausted by a finite number of singularities.

Singularities satisfying C will be called fully simple. Precise definition is given below. The
reason for this terminology is as follows: a simple singularity of a curve does not need to be
fully simple.

In order to explain this claim one should start with a definition of the singularity of a curve
Γ : (a, b) → R

n at a point p in the image of Γ. Let t01, . . . , t
0
d ∈ (a, b) be the inverse images of

the point p. Here d � 1. The local structure of Γ at p can be described by a multigerm with
d components.

Definition. A multigerm of a curve in R
n is a collection γ = (γ1, . . . , γd), where γi :

(R, 0) → (Rn, 0) are map germs; they are called the components of γ. The collection is defined
up to the order of the components.

To describe the local structure of Γ at p by a multigerm γ = (γ1, . . . , γd) take local coordinates
ti centered at t0i and a local coordinate system x centered at p. Then γi is the germ of Γ at the
point t0i expressed in the local coordinates ti and x, i = 1, . . . , d.

Changing the local coordinates ti and x we obtain another multigerm γ̃ = (γ̃1, . . . , γ̃d) which
is RL-equivalent to γ. This means that there exist local diffeomorphisms φi : (R, 0) → (R, 0)
(parameterizations of the components) and a local diffeomorphism Φ : (Rn, 0) → (Rn, 0)
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such that Φ ◦ γi = γ̃i ◦ φi, i = 1, . . . , d, up to numeration of the components of one of the
multi-germs.

Definition. The singularity of a curve Γ in Rn at a point p in the image of Γ is the
RL-equivalence class of some (and then any) multigerm γ describing the local structure of Γ at
p in the space of all multigerms with d components, where d � 1 is the number of the inverse
images of the point p.

In most classification problems the first task is to determine and classify simple singularities.
The simple singularities with one component of curves in R

n were determined and classified by
Bruce and Gaffney in [3] for n = 2, by Gibbson and Hobbs in [4] for n = 3 and by Arnol’d in
[1] for an arbitrary n. These results were continued in [5, 6], where Kolgushkin and Sadykov
classified all simple singularities of curves in R

n, with any number of components and for any n.
The works [5, 6] contain almost 150 normal forms. The definition of simple germ or multigerm
used in all cited above works is as follows.

Definition. A multigerm γ = (γ1, . . . , γd) (and a singularity defined by γ) is called simple
if there exists k < ∞ such that the singularities defined by multigerms with d components and
the k-jet sufficiently close to the k-jet of γ are exhausted by a finite number of singularities.

The starting point for the present work is the observation that a big part of simple
singularities do not satisfy condition C above, see Subsection 1.2. Therefore singularities
satisfying C will be called fully simple. A precise definition of fully simple singularities requires
arcs – maps F : [a, b] → Rn.

Definition. We will say that an arc F : [a, b] → R
n represents a multigerm γ if the image

of F contains 0 ∈ Rn, the points F (a) and F (b) are different from 0, and γ defines the singularity
of F at 0 ∈ R

n. (The singularity of an arc F : [a, b] → R
n at a point p of its image, different

from F (a) and F (b), is the singularity at p of the curve F |(a,b).)

Main Definition. Let γ be a multigerm of a parameterized curve in R
n and let F : [a, b] →

Rn be an arc representing γ. The multigerm γ (and the singularity defined by γ) is called fully
simple if there exists k < ∞ such that the singularities of all arcs F̃ : [a, b] → R

n sufficiently
Ck-close to the arc F at all points of their images sufficiently close to 0 ∈ R

n are exhausted by
a finite number of singularities.

One can easily prove that the definition is correct (the choice of an arc F representing γ is
irrelevant) and that any fully simple multigerm is simple. The definition remains the same if
we restrict ourselves to the singularities at 0 ∈ R

n of those arcs representing γ, the image of
which contains 0 ∈ R

n.
In the present work we determine and classify all fully simple singularities of plane and

space curves. We show that the set of such singularities is much smaller than the set of
simple singularities and their classification is much more natural. In particular, any fully simple
singularity is quasi-homogeneous and for the fully simple singularities of plane curves there is
a natural bijection with the classical A,D,E6, E7, E8 simple singularities of functions.

The reason why a simple singularity might be not fully simple is the adjacency of a simple
singularity described by a multigerm with d components to a singularity class consisting of
non-simple multigerms with more than d components. By definition, a singularity class of
multigerms is any set of multigerms which is closed with respect to the RL-equivalence,
that is the union of a finite or infinite number of singularities. (A single singularity is also
a singularity class.)
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Definition. Let Q be a class of a multigerms of curves in Rn and let γ be a fixed multigerm
represented by an arc F : [a, b] → R

n. The multigerm γ (and the singularity defined by γ)
adjoins the class Q (notation Q ← γ) if for any k < ∞ then there exists a sequence of arcs
Fi : [a, b] → Rn tending to the arc F in the Ck-topology, with images that contain 0 ∈ Rn, and
with singularities at 0 ∈ R

n defined by multigerms of the class Q. A singularity class Q adjoins
a singularity class Q̃ (notation: Q̃ ← Q) if any singularity in Q adjoins Q̃.

It is easy to check that the definition is correct, that is the choice of the arc Γ representing γ is
irrelevant. It is also easy to check that if a singularity adjoins a class containing no fully simple
multigerms (in particular, no simple multigerms) then this singularity is not fully simple.

1.2. Examples of simple but not fully simple singularities

Let us give few obvious examples of simple singularities with d � 1 components which adjoin
certain singularity classes consisting of multigerms with d1 > d components and containing
no simple multigerms. Such simple singularities are not fully simple. We need the following
definition.

Definition. The multiplicity of a curve germ γ : (R, 0) → (Rn, 0) is the minimal p such
that jpγ �= 0 (the multiplicity is ∞ if γ has zero Taylor series). The multiplicity of a multigerm
(γ1, . . . , γd) is the sum of the multiplicities of its components.

For example, the multiplicity of the plane curve multigerm with two components
(t21, t

2k+1
1 ), (t42, t

3
2) is equal to 2 + 3 = 5.

Proposition 1.1. There are no fully simple multigerms of plane curves of multiplicity 4
or more. There are no fully simple multigerms of space curves of multiplicity 5 or more.

On the other hand there is a big number of simple plane curve singularities of multiplicity 4
and simple space curve singularities of multiplicity 5, see [3–6]. Some examples: the plane curve
singularities with one component (t4, t5 ± t7), (t4, t5), (t4, t7 ± t9); the plane curve singularities
with two components

(
(t1, 0), (t42, t

3
2)

)
,
(
(t21, t

2k+1
1 ), (t2s+1

2 , t22)
)
.

To prove Proposition 1.1 introduce the following notation.
• By (I, I, . . . , I)Rn (or simply (I, I, . . . , I)) with I repeated r times we denote the class of

multigerms of curves in Rn consisting of r immersed components.
Proposition 1.1 is a direct corollary of the following two claims.

Proposition 1.2. Any multigerm of multiplicity at least r adjoins the class (I, I, . . . , I)
with I repeated r times.

Proposition 1.3. The classes (I, I, I, I))R2 and (I, I, I, I, I))R3 contain no simple multi-
germs.

Proof of Proposition 1.2. It is easy to prove that if a multigerm γ adjoins a class Q and a
multigerm γ̃ adjoins a class Q̃ then the multigerm (γ, γ̃) with d + d̃ components adjoins the
class (Q, Q̃) = {(ψ, ψ̃) : ψ ∈ Q, ψ̃ ∈ Q̃}. This statement reduces Proposition 1.2 to the case of
one component. It suffices to consider a curve germ of multiplicity r, that is, a germ γ : (R, 0) →
(Rn, 0) of the form γ(t) = trf(t), where f : (R, 0) → Rn is a map germ such that f(0) �= 0. Let
F (t) be a non-vanishing function defined on the interval t ∈ [−1, 1] with the germ f(t) at the
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point t = 0. Consider the arc Γε = (t − ε1) · . . . · (t − εr)F (t), t ∈ [−1, 1]. The arc Γ0 represents
the germ γ. If ε1, . . . , εr ∈ (−1, 1) are distinct numbers then the singularity at 0 ∈ R

n of the
arc Γε consists of r immersed curves.

Proposition 1.3 is a well-known statement. In the RL-classification of multigerms of the
class (I, I, I, I)R2 (respectively (I, I, I, I, I)R3) a modulus, that is, parameter distinguishing
close non-equivalent multigerms occurs already in the classification of 1-jets – it is the cross-
ratio invariant in the classification of tuples consisting of four (respectively five) 1-dimensional
subspaces of R

2 (respectively R
3) with respect to the group of linear transformations.

Let us give one more example of simple but not fully simple germ γ : (R, 0) → (R2, 0).
Introduce the following class of multigerms.

• (I � I · . . . · � I)Rn is the subclass of (I, I, . . . , I)Rn consisting of multigerms such that the
images of all components have the same tangent line at 0.

Proposition 1.4. The class (I � I � I)R2 contains no simple multigerms.

This statement is also well known: there is a modulus in the RL-classification of the
2-jets of multigerms of this class. A generic 2-jet can be described by the normal form
(t1, 0), (t2, t22), (t3, at23), a �∈ {0, 1}, and it is easy to prove that the parameter a is a modulus
(it is a modulus in the classification of a tuple consisting of three parabolas which are tangent
at 0 with respect to the group of 2-jets of local diffeomorphisms; the same modulus as in the
classification of the singularity class J10 of function germs, see [2]).

Consider now a plane curve singularity defined by a germ of the form

γ : x(t) = t3, y(t) = t7 · f(t). (1.1)

Consider the deformation

γε : x = (t − ε1)(t − ε2)(t − ε3), y =
(
(t − ε1)(t − ε2)(t − ε3)

)2 · t · f(t).

If ε1, ε2, ε3 are distinct numbers then the singularity at 0 ∈ R
2 of the curve γε consists of three

immersed curves tangent to the x-axes. Therefore the germ γ adjoins the class (I � I � I)R2 and
consequently it is not fully simple. On the other hand, if f(0) �= 0 then γ is simple, see [3].

1.3. Fully simple singularities with one component

Our results for the case of one component are as follows: all fully simple plane curve
singularities with one component are exhausted by the singularities

A2k, (3, 4), (3, 5)

and all fully simple space curve singularities with one component are exhausted by the
singularities

A2k, (3, 4, 5), (3, 4, 0), (3, 5, 7), (3, 5, 0), (3, 7, 8), (1.2)
(4, 5, 6), (4, 5, 7), (4, 6, 7). (1.3)

Here we use the following usual notation. A2k denotes the singularity defined by the germ
(t2, t2k+1) in the case of plane curves and (t2, t2k+1, 0) in the case of space curves; (q, p) denotes
the plane curve singularity defined by the germ (tq, tp); by (q, p, r) and (q, p, 0) we denote the
space curve singularity defined by the germ (tq, tp, tr) and (tq, tp, 0), respectively.
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1.4. Fencing singularity classes

A tuple of singularity classes will be called fencing (for fully simple singularities of curves
in Rn) if any of these classes contains no fully simple multigerms and any singularity which is
not fully simple adjoins one of these classes, with a possible exception of infinitely-degenerate
singularities (a certain class of singularities of infinite codimension). It turns out that for fully
simple singularities of plane and space curves there is a tuple of fencing classes with multigerms
that consist of immersed curves only. To present these classes we use the following notation.

• By (I � I � I)#
R3 we denote the subclass of the class (I � I � I)R3 consisting of multigerms

of space curves with planar 2-jet. Here we use the following definition.

Definition. A multigerm γ of a space curve is called planar if its image (that is, the union
of the images of the components) is contained in a non-singular surface. The r-jet of γ is called
planar if there exists a planar multigerm γ̃ such that jrγ̃ = jrγ.

• By (I, I, I, I)#
R3 we denote the subclass of the class (I, I, I, I)R3 consisting of multigerms

of space curves such that the tangent lines at 0 ∈ R3 to the images of the four components do
not span T0R

3.

Proposition 1.5. The classes (I � I � I)#
R3 and (I, I, I, I)#

R3 contain no simple multigerms.

Proof. The definitions of these classes and Propositions 1.3 and 1.4 imply that there is a
modulus in the RL-classification of the 1-jets of multigerms of the class (I, I, I, I)#

R3 and of the
2-jets of multigerms of the class (I � I � I)#

R3 .

Define also the following two classes of infinite codimension.

• By (A∞, ∗) we denote the class of multigerms of curves in R
n with any number 1 or

more of components such that the Taylor series of one of the components is RL-equivalent to
(t2, 0, . . . , 0);

• By ((I, I)∞, ∗) we denote the class of multigerms of curves in R
n with any number 2 or

more of components such that two of them, say γ1 and γ2, are immersed curves with tangency of
infinite order, that is, in suitable coordinates the image of γ1 is the x1-axes and γ2 : xi = ai(t)
where the function germs a2(t), . . . , an(t) have zero Taylor series.

Theorem A. A singularity of a parameterized curve in Rn, n = 2, 3 is fully simple if and
only if it does not belong to the classes (A∞, ∗), ((I, I)∞, ∗) and does not adjoin any of the
following classes:

n = 2 : (I � I � I)R2 , (I, I, I, I)R2 ; (1.4)

n = 3 : (I � I � I)#
R3 , (I, I, I, I)#

R3 , (I, I, I, I, I)R3 . (1.5)

By Theorem A the following conjecture holds for n = 2, 3.

Conjecture A1. Denote by Fn the class of non-simple multigerms of curves in R
n with

at most (n + 2) immersed components. A singularity of a curve in R
n is fully simple if and

only if it does not belong to the classes (A∞, ∗), ((I, I)∞, ∗) and does not adjoin the class Fn.
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1.5. Full simplicity and quasi-homogeneity

The quasi-homogeneity of a singularity of a curve in R
n is the following property: a multigerm

defining this singularity is RL-equivalent to a multigerm with components of the form
xi = ait

rλi , i = 1, . . . , n, where λ1, . . . , λn > 0 are positive numbers (weights) which are the
same for all components, whereas the coefficients a1, . . . , an ∈ R might vary from a component
to a component.

A number of simple singularities of plane and space curves, including singularities with one
components (that is simple germs) are not quasi-homogeneous, see [3] and [4]. The simplest
examples are the plane curve germs (t3, t7 + t8) and (t4, t5 + t7) and the space curve germs
(t3, t7 + t8, t11) and (t4, t5 + t7, t11). On the other hand, the classification results of the present
work imply the following.

Theorem B. Any fully simple singularity of a parameterized plane or space curve, with
any number of components, is quasi-homogeneous.

Conjecture B1. Theorem B holds for singularities of parameterized curves in R
n for

any n.

1.6. Plan for the paper

In Section 2 we present results on determination and classification of fully simple singularities
of plane curves (Theorem C) and establish the bijection between such singularities and the
classical A,D,E6, E7, E8 simple singularities of functions. We also compare the list of fully
simple singularities of plane curves with a much more involved list of simple singularities. (In
this purpose we explain in canonical terms some of the normal forms obtained in [5, 6].) In
Section 3 we determine and classify all fully simple space curves singularities (Theorem D).
The proof of Theorems C and D and simultaneously the proof of Theorem A is contained in
Sections 4–7. Theorem B is a direct corollary of the obtained classification results.

1.7. Analytic curves (C, 0) → (Cn, 0)

The definition of fully simple singularities can be extended, in a natural way, to such curves.
All results remain the same up to the following obvious changes: A±

2i+1 ↪→ A2i+1, D±
2i+4 ↪→

D2i+4, i � 0, (Subsection 2.2), and consequently the second column of Table 1 contains all
simple V -singularities (not only those which have the property of zeros); c± ↪→ c and b± ↪→ b
(Tables 3 and 4, Subsection 3.3).

1.8. Notations for singularity classes

We will use the following notations for certain singularity classes, continuing the notations
in Subsection 1.4.

• By (I, I)i we denote the class of multigerms consisting of two immersed components γ1, γ2

with tangency of finite order i � 0.
Here and in what follows the order of tangency between immersed components γ1, γ2 is the order
of tangency between their images. It will be denoted ord(γ1, γ2). Fix a local coordinate system
x1, . . . , xn such that the image of γ1 is the x1-axes. Let γ2 : xi = ai(t). Then ord(γ1, γ2) is the
minimal i such that at least one of the function germs a2(t), . . . , an(t) has non-zero (i + 1)-jet.
The zero order of tangency means that the images of γ1 and γ2 are not tangent.

• By (I, I, . . . , I)i,0 with I repeated r � 3 times we denote the class of multigerms consisting
of r immersed components such that, up to numeration of the components, no two of the
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first (r − 1) components are tangent and one of them has tangency of order i with the last
component. The case i = 0 means that no two of the r components are tangent.

• Given a class Q of singularities with one component we denote by (I,Q) the class
of multigerms (μ, ψ) consisting of an immersed component μ and a singular component
ψ ∈ Q. Similarly, by ((I, I)i, Q) we denote the class of multigerms (μ1, μ2, ψ) consisting of
two immersed components μ1, μ2 such that (μ1, μ2) ∈ (I, I)i and a singular component ψ ∈ Q.

• Given two classes Q1, Q2 of singularities with one component we denote by (Q1, Q2) the
class of multigerms (ψ1, ψ2) such that ψ1 ∈ Q1, ψ2 ∈ Q2.

2. Fully simple singularities of plane curves

2.1. Determination and classification of fully simple singularities

Recall the definition of the tangent line to a curve germ γ : (R, 0) → (Rn, 0) with non-zero
Taylor series. It is the limit as t → 0 of the 1-dimensional subspaces span(γ̇(t)) ⊂ Tγ(t)R

n. Let
jp−1γ = 0 and jpγ �= 0. Then γ(t) = tp−1γ̃(t), where γ̃ is an immersed curve germ, and the tan-
gent line to γ is the tangent line at 0 to the image of γ̃ (if γ is immersed then p = 1 and γ̃ = γ).

Notation. The tangent line to a curve germ γ : (R, 0) → (Rn, 0) with non-zero Taylor
series will be denoted �(γ). Given a class Q of plane curve singularities with one component,
we denote by I � Q and I � Q the subclass of the class (I,Q) consisting of multigerms with an
immersed component μ and a singular component ψ ∈ Q such that �(μ) �= �(ψ) and �(μ) = �(ψ),
respectively.

Theorem C. A plane curve singularity is fully simple if and only if it belongs to one of
the classes in the first column of Table 1. Each of these classes is a singularity, that is all its
multigerms are RL-equivalent (to the normal form given in the first column).

2.2. Fully simple plane curve singularities and simple singularities of functions

Table 1 implies that there is a natural bijection between fully simple plane curve singularities
and the classical simple V -singularities of functions of two variables having the property of
zeros.

Recall from [2] that the V -equivalence of function germs f, g : (R2, 0) → (R, 0) means that g
can be obtained from f by a local diffeomorphism (change of coordinates) and multiplication by
a non-vanishing function. The V -equivalence class of a function germ is called the V -singularity.
A V -singularity defined by a function germ f is called simple if there exists k < ∞ such that
the V -singularities defined by function germs with the k-jet sufficiently close to the k-jet of f
are exhausted by a finite number of V -singularities. It is classically known (see [2]) that the
simple V -singularities are exhausted by the series A±

2k−1 : y2 − x2k, A2k : y2 − x2k+1,D±
2k+2 :

xy2 ± x2k+1,D2k+3 : xy2 − x2k+2, (k � 1) and E6 : y3 − x4, E7 : y3 − x3y,E8 : y3 − x5. We will
say that a V -singularity defined by a function germ f has the property of zeros if any function
germ vanishing on the set {f = 0} belongs to the ideal generated by f . It is clear that the
singularities A+

2k−1 and D+
2k+2 do not have the property of zeros, and it is easy to prove that

all other simple V -singularities have this property. Thus the second column of Table 1 contains
all simple V -singularities having the property of zeros.

The correspondence between the singularities in the first and the second column of Table 1
is as follows. Given a multigerm γ, we associate to it the ideal Iγ consisting of function germs
vanishing on the image of each of the components of γ. If γ does not belong to a certain class of
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infinite codimension (containing no simple multigerms) then the ideal Iγ is 1-generated. Let fγ

be one of the generators. The V -singularity defined by fγ is invariantly related to the singularity
of a parameterized plane curve defined by the multigerm γ: a multigerm γ̃ is RL-equivalent to
γ if and only if the function germ fγ̃ is V -equivalent to fγ . We will say that the V -singularity
defined by fγ is the functional realization of the plane curve singularity defined by γ.

It is easy to check that every singularity in the second column of Table 1 is the functional
realization of the singularity in the first column and the same row. Therefore Theorem C
implies the following corollary.

Table 1. Fully simple plane curve singularities and simple V -singularities
of functions. Indexes: k � 1, i � 0.

Fully simple singularities of plane curves Simple V-singularities of functions

A2k : (t2, t2k+1) A2k : y2 − x2k+1

(3, 4) : (t3, t4) E6 : y3 − x4

(3, 5) : (t3, t5) E8 : y3 − x5

(I, I)i : (t1, 0), (t2, ti+1
2 ) A−

2i+1 : y2 − x2i+2

I � A2k : (t21, t2k+1
1 ), (0, t2) D2k+3 : xy2 − x2k+2

I � A2 : (t21, t31), (t2, 0) E7 : y3 − x3y

(I, I, I)0,i : (t1, 0), (0, t2), (ti+1
3 , t3) D−

2i+4 : xy2 − x2i+3

Theorem C1. A singularity of a parameterized plane curve is fully simple if and only if
its functional realization is simple.

Is it possible to prove Theorem C1 without using Theorem C? It is not hard to prove that the
adjacency of two plane curve singularities implies the adjacency of their functional realizations,
that is, the part ‘if’ in Theorem C1. On the other hand, the ‘only if’ part of Theorem C1 is
non-trivial and maybe surprising because the adjacency of the functional realizations of two
plane curve singularities does not imply the adjacency of these singularities. Trivial examples
can be found already within Table 1:

A2k � (I, I)k (3, 4) � I � A2


 
 
 

A2k ← A−

2k+1 E6 ← E7

2.3. Fully simple versus simple plane curve singularities

According to results in [3] for the case of one component and [5, 6] for the case of 2 or more
components components, a plane curve singularity is simple if and only if it belongs to one of
the classes in Table 2 below.

Table 2. Simple and fully simple plane curve singularities. Indexes: k, s � 1, i � 0

Class of simple singularities Fully simple? Class of simple singularities Fully simple?

A2k Yes I � A2k, k � 1 Only if k = 1
E6k, E6k+2 Only if k = 1 I � E6k, I � E6k+2 No
(t4, t6 + t7+2i) No I � (3, 4), I � (3, 5) No
(t4, t5 ± t7), (t4, t5), (t4, t7 ± t9) No A2k � A2s No
(I, I)i Yes (I, I, I)i,0 Yes
I � A2k Yes ((I, I)0, A2k) No
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In this table the usual notation E6k and E6k+2 are used for the class of germs which
are RL-equivalent to germs of the form (t3, t3k+1 + higher order terms) and (t3, t3k+2 +
higher order terms), respectively. Note that E6 = (3, 4) and E8 = (3, 5). The class A2k � A2s

consists of multigerms with two singular components ψ1 ∈ A2k, ψ2 ∈ A2s such that �(ψ1) �=
�(ψ2). The table shows which of the simple singularities are fully simple. Each of the classes in
Table 2 consists of a finite number of singularities. For example, the class I � A2k consists of
(2k − 1) singularities (t21, t

2k−1
1 ), (t2, t

j+1
2 ), j = 1, . . . , 2k − 1.

3. Fully simple singularities of space curves

To formulate the results on determination and classification of such singularities we need,
except the tangent line �(γ) to an immersed or singular germ γ : (R, 0) → (R3, 0), (see the
beginning of Section 2) the definition of the tangent plane to a multigerm of a space curve
(Subsection 3.1) and the definition of the order of tangency between a non-singular curve germ
μ : (R, 0) → (R3, 0) and a space cusp ψ ∈ A2k (Subsection 3.2). A theorem on determination
and classification of fully simple space curve singularities is formulated in Subsection 4.3.
Though the list of such singularities is much bigger than that of fully simple plane curve
singularities, it is far from being as involved as the classification of simple space curve
singularities obtained in [5, 6].

3.1. Tangent plane to a space curve multigerm

One of the equivalent definitions is as follows. At first we define the order of tangency
between any space curve multigerm γ with d components γi : x = ai(t), y = bi(t), z = ci(t) and
a germ of a non-singular surface S ⊂ R3. Let S = {H(x, y, z) = 0}. Consider the functions
Ri(t) = H(ai(t), bi(t), ci(t)).

Definition and Notation. The order of tangency between γ and S is the minimal integer
r such that at least one of the functions Ri(t), i = 1, . . . , d has non-zero (r + 1)-jet. The order
of tangency will be denoted ord(γ, S).

If the image of γ is contained in S then ord(γ, S) = ∞. If γ consists of one immersed
component transversal to S then ord(γ, S) = 0.

Definition and Notation. The tangent plane L(γ) to a multigerm γ of a space curve
is well defined if all non-singular surfaces S ⊂ R

3 for which ord(γ, S) takes maximal possible
value have the same tangent plane at 0. In this case L(γ) = T0S.

Examples. We need two examples when the tangent plane is well defined.
(1) It is well known that if γ consists of one singular component then the tangent plane L(γ)

is well defined, provided that the Taylor series of γ is not RL-equivalent to a series of the form
(atr, 0, 0), where r � 2, a ∈ R. Under this assumption, excluding a class of infinite codimension,
γ is RL-equivalent to a germ of the form (x, y, z) = (tq, tp, 0) + o(tp), where 2 � q < p and
p �= 0mod q. In the coordinates of this normal form one has L(γ) = span(∂/∂x, ∂/∂y). (In the
same coordinates the tangent line �(γ), which is always a subspace of the tangent plane, is
spanned by the vector ∂/∂x). If γ is planar (for example, γ ∈ A2k ∪ (3, 4, 0) ∪ (3, 5, 0)) then
L(γ) is the tangent plane at 0 to some (and then any) non-singular surface containing the
image of γ.

(2) If γ = (μ1, μ2) is a multigerm of the class (I, I)i then L(γ) is the tangent plane at 0 to
some (and then any) non-singular surface containing the images of the immersed curves μ1 and
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μ2. Any multigerm of the class (I, I)i is RL-equivalent to the multigerm (t1, 0, 0), (t2, ti+1
2 , 0);

in these coordinates L(γ) = span(∂/∂x, ∂/∂y), where x and y are the first two coordinates.

3.2. The order of tangency between an immersed curve and a cusp in R3

Let μ be an immersed space curve germ and let ψ ∈ A2k.

Definition and Notation. The order of tangency between μ and ψ is the number
ord(μ, ψ) = min ord(μ, S), where the minimum is taken over all non-singular surfaces S
containing the image of ψ.

Lemma 3.1. Let μ be an immersed space curve germ and let ψ ∈ A2k. If �(μ) �⊂ L(ψ)
then ord(μ, ψ) = 0. If �(μ) ⊂ L(ψ), but �(μ) �= �(ψ) then ord(μ, ψ) = 1. If �(μ) = �(ψ) then
1 � ord(μ, ψ) � 2k and for generic couple (μ, ψ) within this case one has ord(μ, ψ) = 1.

Proof. Take local coordinates in which

ψ : x = t2, y = t2k+1, z = 0, μ : x = a(t), y = b(t), z = c(t).

Any non-singular surface S containing the image of ψ is described by equation z − (y2 −
x2k+1)g(x, y) = 0, with an arbitrary function g(x, y). Let

R(t) = c(t) − (b2(t) − a2k+1(t)) · g(a(t), b(t)).

The lemma follows from the following observations.
(1) The condition �(μ) �⊂ L(ψ) means that c′(0) �= 0. In this case R′(0) �= 0.
(2) The condition �(μ) ⊂ L(ψ), �(μ) �= �(ψ) means that c′(0) = 0, b′(0) �= 0. In this case

R′(0) = 0 and if g(0, 0) is a generic number then R′′(0) �= 0.
(3) The condition �(μ) = �(ψ) means that c′(0) = b′(0) = 0. If c′′(0) �= 0 then R′′(0) �= 0.

Since μ is immersed then a′(0) �= 0 and it is easy to see that if g(x, y) ≡ r with a generic r ∈ R

then j2k+1R �= 0.

3.3. Determination and classification of fully simple singularities

In Tables 3 and 4 below we denote immersed components by μ, μ1, μ2, . . . , and singular
components by ψ,ψ1, ψ2, . . . .

Theorem D. Any fully simple space curve singularity has not more than four components.
A space curve singularity with one component is fully simple if and only if it is one of the
singularities (1.2), (1.3). A space curve singularity with two components (respectively three
or four components) is fully simple if and only if it belongs to one of the classes given in the
first column of Table 3 (respectively Table 4) and satisfies the restrictions given in the second
column. Any such singularity is RL-equivalent to one and only one of the normal forms given
in the third column. The normal forms are distinguished in coordinate-free terms in the part
‘Cases’ of the second column of Tables 3 and 4.

Here by coordinate-free terms we mean the mutual position of the tangent lines and the
tangent planes to the components and/or the orders of tangency between the components. It
is easy to see that the second column of Tables 3 and 4 contains all possible cases within the
given restrictions. For example, within the restriction L(ψ1) �= L(ψ2) for multigerms of the
class (A2, A2), see Table 3, the case �(ψ1) ⊂ L(ψ2), �(ψ2) ⊂ L(ψ1), �(ψ1) �= �(ψ2) is impossible.
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4. Proof of Theorems C, D and A (outline)

Throughout the proof we will use the following notation.

Notation. By W we denote the union of the classes in Table 1. We will use the same
notation W for the union of space curve singularities (1.2) and (1.3), and the subclasses of the
classes in Tables 3 and 4 consisting of multigerms satisfying the restrictions given in the second
column of these tables.

Table 3. Fully simple space curve singularities with two components.

A singularity is fully simple if and only if

Class Cases Singularities

(I, I)i, i � 0 No restrictions ((t1, 0, 0), (t2, ti+1
2 , 0)

(I, A2) No restrictions

a : �(μ) �⊂ L(ψ) a : (t21, t31, 0), (0, 0, t2)

b : �(μ) ⊂ L(ψ); �(μ) �= �(ψ) b : (t21, t31, 0), (0, t2, 0)

c : �(μ) = �(ψ); ord(μ, ψ) = 1 c : (t21, t31, 0), (t2, 0, t22)

d : �(μ) = �(ψ); ord(μ, ψ) = 2 d : (t21, t31, 0), (t2, 0, 0)

(I, A4) if �(μ) = �(ψ) then ord(μ, ψ) = 1

a : �(μ) �⊂ L(ψ) a : (t21, t51, 0), (0, 0, t2)

b : �(μ) ⊂ L(ψ); �(μ) �= �(ψ) b : (t21, t51, 0), (0, t2, 0)

c : �(μ) = �(ψ); ord(μ, ψ) = 1 c : (t21, t51, 0), (t2, 0, t22)

(I, A2k), k � 3 �(μ) �= �(ψ)

a : �(μ) �⊂ L(ψ) a : (t21, t2k+1
1 , 0), (0, 0, t2)

b : �(μ) ⊂ L(ψ) b : (t21, t2k+1
1 , 0), (0, t2, 0)

(I, (3, 4, 5)) No restrictions

a : �(μ) �⊂ L(ψ) a : (t31, t41, t51), (0, 0, t2)

b : �(μ) ⊂ L(ψ); �(μ) �= �(ψ) b : (t31, t41, t51), (0, t2, 0)

c : �(μ) = �(ψ); c : (t31, t41, t51), (t2, 0, 0)

(I, (3, 4, 0)) �(μ) �⊂ L(ψ) (t31, t41, 0), (0, 0, t2)

(I, (3, 5, 7)) (t31, t51, t71), (0, 0, t2)

(I, (3, 5, 0)) (t31, t51, 0), (0, 0, t2)

(A2, A2) L(ψ1) �= L(ψ2)

a : �(ψ1) �⊂ L(ψ2), �(ψ2) �⊂ L(ψ1) a : (t21, t31, 0), (0, t32, t22)

b : �(ψ1) ⊂ L(ψ2), �(ψ2) �⊂ L(ψ1) b : (t21, t31, 0), (t32, 0, t22)

(up to numeration of ψ1, ψ2)

c : �(ψ1) = �(ψ2) c± : (t21, t31, 0), (±t22, 0, t32)

�(ψ2) �⊂ L(ψ1)
(A2, A2k), k � 2 (assuming ψ1 ∈ A2, ψ2 ∈ A2k)

a : �(ψ1) �⊂ L(ψ2) a : (t21, t31, 0), (0, t2k+1
2 , t22)

b : �(ψ1) ⊂ L(ψ2) b : (t21, t31, 0), (t2k+1
2 , 0, t22)
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Using this notation, Theorems C and D can be joined as follows.

Theorem 4.1.

(i) A plane or space curve singularity is fully simple if and only if it belongs to the class W .
(ii) Any multigerm with at least two components of a plane or space curve of the class W

is RL-equivalent to the normal form given in Tables 1, 3 and 4.

Table 4. Fully simple space curve singularities with 3 and 4 components.

A singularity is fully simple if and only if

Class Cases Singularities

μ1 = (t1, 0, 0)

(I, I, I)i,0 No restrictions μ2 = (t2, ti+1
2 , 0)

a : �(μ3) �⊂ L(μ1, μ2) a : μ3 = (0, 0, t3)

b : �(μ3) ⊂ L(μ1, μ2) b : μ3 = (0, t3, 0)

(assuming ord(μ1, μ2) = i)

I � I � I the 2-jet of the multigerm μ1 = (t1, 0, 0)

is not planar μ2 = (t2, t22, 0)

μ3 = (t3, 0, t23)

ψ = (t21, t31, 0)

((I, I)0, A2) span(�(μ1), �(μ2)) �= L(ψ) μ1 = (0, 0, t2),

a : �(μ1), �(μ2) �⊂ L(ψ) a : μ2 = (0, t3, t3)

b : �(μ2) ⊂ L(ψ), �(μ2) �= �(ψ) b : μ2 = (0, t3, 0)

c1 : �(μ2) = �(ψ), ord(μ2, ψ) = 1 c1 : μ2 = (t3, 0, t23)

c2 : �(μ2) = �(ψ), ord(μ2, ψ) = 2 c2 : μ2 = (t3, 0, 0)

(up to numeration of μ1, μ2)

ψ = (t21, t2k+1
1 , 0)

((I, I)0, A2k), k � 2 �(μ1), �(μ2), �(ψ) span T0R
3 μ1 = (0, 0, t2)

a : �(μ1), �(μ2) �⊂ L(ψ) a : μ2 = (0, t3, t3)

b : �(μ1) �⊂ L(ψ), �(μ2) ⊂ L(ψ) b : μ2 = (0, t3, 0)

(up to numeration of μ1, μ2)

ψ = (t21, t31, 0),

((I, I)i, A2), i � 1 �(μ1) = �(μ2) �⊂ L(ψ) μ1 = (0, 0, t2),

a : �(ψ) �⊂ L(μ1, μ2) a : μ2 = (0, ti+1
3 , t3)

b : �(ψ) ⊂ L(μ1, μ2) b± : μ2 = (±ti+1
3 , 0, t3)

(± ↪→ + iff i is even)

μ1 = (t1, 0, 0),

μ2 = (0, t2, 0),

(I, I, I, I)i,0, i � 0 �(μ1), �(μ2), �(μ3), �(μ4) span T0R
3 μ3 = (0, 0, t3),

a : �(μ2), �(μ3) �⊂ L(μ1, μ4) a : μ4 = (t4, ti+1
4 , ti+1

4 )

b : �(μ2) ⊂ L(μ1, μ4) or b : μ4 = (t4, ti+1
4 , 0)

�(μ3) ⊂ L(μ1, μ4)

(assuming that �(μ1), �(μ2), �(μ3)

span T0R
3 and ord(μ1, μ4) = i)
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The second statement of this theorem can be proved by the standard normalization
techniques. It also follows from a straightforward analysis of the list of normal forms obtained
in [5, 6].

Let us show that Theorem 4.1, (i) follows from Propositions 4.2 and 4.3 below. In what
follows by the fencing classes we mean the fencing singularity classes defined in Subsection 1.4:
the classes (1.4) in the case of plane curves and the classes (1.5) in the case of space curves.

Proposition 4.2. Any plane or space curve singularity beyond the class W and the classes
(A∞, ∗) and ((I, I)∞, ∗) adjoins one of the fencing classes.

Proposition 4.3. Any plane or space curve singularity of the class W does not adjoin any
of the fencing classes.

Theorem 4.1(i) from Propositions 4.2 and 4.3. Since, as we showed in Subsection 1.4, the
fencing classes contain no simple multigerms then Proposition 4.2 implies the ‘only if’ part of
Theorem 4.1(i). The proof of the ‘if’ part is as follows. Assume, to obtain a contradiction, that
a multigerm γ ∈ W is not fully simple. Represent γ by an arc Γ defined on the segment [−1, 1].
Then for any k there exists a sequence of arcs Γ1,Γ2, . . . defined on [−1, 1] and tending to Γ in
the Ck topology such that the singularities at the origin of the arcs Γi1 and Γi2 are different
for any i1 �= i2. The class W consists of a countable number of singularities, see Tables 1, 3
and 4. It is easy to check (using the notion of the codimension of singularities) that any fixed
singularity of the class W adjoins not more than a finite number of singularities in this class.
Therefore the sequence Γi can be chosen in such a way that the singularities at the origin of Γi

do not belong to the tuple W . By Proposition 4.2 these singularities adjoin one of the fencing
classes. This means that for any k and any fixed i there exists a sequence of arcs Γi,1,Γi,2, . . .
defined on [−1, 1], tending to Γi in the Ck-topology, and such that the singularities at the origin
of Γi,1,Γi,2, . . . belong to one of the fencing classes. Consider the sequence of arcs Γ1,1,Γ2,2, . . . .
It tends to the arc Γ in the Ck topology and the singularity at the origin of Γi,i belongs to
one of the fencing classes. Therefore γ adjoins one of the fencing classes which contradicts to
Proposition 4.3.

Theorem A is a direct corollary of Theorem 4.1(i) and Propositions 4.2 and 4.3. Therefore
to prove Theorems C, D and A it suffices to prove Propositions 4.2 and 4.3. Proposition 4.2 is
proved in Section 5. Proposition 4.3 is proved in Sections 6 and 7.

5. Proof of Proposition 4.2

Throughout the proof we use the following deformation of tr:

Pr,ε(t) = (t − ε1) · (t − ε2) · . . . · (t − εr).

5.1. The case of one component

The classification results in [3] imply that any plane curve germ γ : (R, 0) → (R2, 0) beyond
the singularities A2k, (3, 4), (3, 5) and the class A∞ either has multiplicity 4 or more, or is RL-
equivalent to a germs of form (1.1). As we showed in Subsection 1.2, in the first case γ adjoins
the fencing class (I, I, I, I)R2 and in the second case it adjoins the fencing class (I � I � I)R2 .

The classification results in [4] imply that any space curve germ γ : (R, 0) → (R3, 0) beyond
the singularities (1.2), (1.3) and the class A∞ either has multiplicity 5 or more, (and then it
adjoins the fencing class (I, I, I, I, I)R3 , see Proposition 1.2) or is RL-equivalent to a germ of
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one of the following forms:

x(t) = t3, y(t) = t7 · b(t), z(t) = t10 · c(t); (5.1)

x(t) = t4, y(t) = t5 · b(t), z(t) = t9 · c(t). (5.2)

Let us show that germ (5.1) adjoins the fencing class (I � I � I)#
R3 and germ (5.2) adjoins the

fencing class (I, I, I, I)#
R3 . To prove the adjacency (I � I � I)#

R3 ← (5.1) it suffices to consider
the deformation

x = P3,ε(t), y = P 2
3,ε(t) · t · b(t), z = P 3

3,ε(t) · t · c(t). (5.3)

In fact, if ε1, ε2, ε3 are distinct then the singularity at 0 ∈ R3 of the curve (5.3) consists of
three immersed curves tangent to the x-axes and having tangency of order 2 or more with the
plane z = 0.

The adjacency (I, I, I, I)#
R3 ← (5.2) can be realized by the deformation

x = P4,ε(t), y = P4,ε(t) · t · b(t), z = P 2
4,ε(t) · t · c(t). (5.4)

In fact, the singularity at 0 ∈ R
3 of the curve (5.4) consists of four immersed curves tangent

to the plane z = 0.

5.2. Plane curve singularities with at least two components

It is easy to check that any plane curve singularity with at least two components beyond
the singularities in Table 1 and the classes (A∞, ∗) and ((I, I)∞, ∗) either has multiplicity 4
or more ((and then it adjoins the fencing class (I, I, I, I)R2 by Proposition 1.2), or belongs to
the fencing class (I � I � I)R2 , or belongs to the class I � A2k�4. The latter class adjoins the
fencing class (I � I � I)R2 by the following lemma.

Lemma 5.1. If k � 2 then any plane curve germ ψ ∈ A2k adjoins the class of multigerms
with two immersed components μ1, μ2 tangent to the line �(ψ) and such that the order of
tangency between μ1, μ2 is equal to (k − 1).

Proof. Take local coordinates in which ψ has the form x = t21, y = t2k+1
1 . Then �(ψ) =

span(∂/∂x). The required adjacency is realized by the deformation γε : x = P2,ε(t), y = P k
2,ε(t) ·

t. In fact, if ε1 �= ε2 then the singularity at 0 ∈ R
2 of the curve γε consists of two immersed

curves tangent to the x-axes; it is easy to see that the order of tangency is equal to (k − 1).

5.3. Space curve singularities with at least two components

The proof is based on the following lemmas.

Lemma 5.2. Any space curve germ ψ ∈ A2k adjoins the class of multigerms with two
immersed components μ1, μ2 such that �(μ1), �(μ2) ⊂ L(ψ). If k � 2 then ψ adjoins the subclass
of this class consisting of multigerms (μ1, μ2) such that μ1 and μ2 are tangent to the line �(ψ)
and ord(μ1, μ2) = (k − 1).

Proof. Follows from Lemma 5.1 and the fact that any space curve germ ψ ∈ A2k is planar:
its image is contained in a non-singular surface tangent to the plane L(ψ) which contains the
line �(ψ).
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Lemma 5.3. Any germ ψ : (R, 0) → (R3, 0) satisfying the condition

j2ψ = 0, j3ψ �= 0, ψ �∈ (3, 4, 5) ∪ (3, 4, 0) ∪ (3, 5, 7) ∪ (3, 5, 0) (5.5)

adjoins the class of multigerms consisting of three components whose images have the same
tangent line at 0 ∈ R

3.

Proof. In suitable coordinates ψ has the form x = t3, y = t7b(t), z = t7c(t), see [4]. The
required adjacency is realized by the deformation x = P3,ε(t), y = P 2

3,ε(t) · t · b(t), z = P 2
3,ε(t) ·

t · c(t). In fact, if ε1, ε2, ε3 are distinct then the singularity at 0 ∈ R3 of this curve consists of
three immersed components tangent to the x-axes.

Lemma 5.4. Any germ ψ ∈ (3, 4, 0) ∪ (3, 5, 7) ∪ (3, 5, 0) adjoins the class of multigerms with
three immersed components tangent to the plane L(ψ).

Proof. In suitable coordinates ψ has the form x = t3, y = t4b(t), z = t7c(t) and L(ψ) =
span(∂/∂x, ∂/∂y). The required adjacency is realized by the deformation x = P3,ε(t), y =
P3,ε(t) · t · b(t), z = P 2

3,ε(t) · t · c(t). In fact, if ε1, ε2, ε3 are distinct then the singularity at 0 ∈ R
3

of this curve consists of three immersed components tangent to the plane z = 0.

Let us show that these lemmas imply that any space curve singularity with at least two
components beyond the class W adjoins one of the fencing classes. We start with space curve
singularities with at least two components which do not belong to any of the classes given in
the first column of Tables 3 and 4, neither to the classes (A∞, ∗) and ((I, I)∞, ∗). It is easy to
check that any such singularity γ either belongs to one of the the fencing classes (I � I � I)#

R3 ,
(I, I, I, I)#

R3 or satisfies one of the following conditions:
(a) γ has multiplicity 5 or more;
(b) γ ∈ (A2k, A2s), where k, s � 2 or γ ∈ ((I, I)i, A2k) where i � 1 and k � 2;
(c) γ = (μ, ψ), where the singular component ψ satisfies (5.5).
In case (a) the singularity adjoins the fencing class (I, I, I, I, I)R3 by Proposition 1.2. In case

(b) Lemma 5.2 implies that γ adjoins the fencing class (I, I, I, I)#
R3 . The same holds in case

(c) by Lemma 5.3.
Now we analyze space curve singularities γ with at least two components which belong to

one of the classes in the first column of Tables 3 and 4, but do not satisfy the restriction
given in the second column of these tables. In the case of classes I � I � I and (I, I, I, I)i,0

such singularities belong to one of the fencing classes (I � I � I)#
R3 , (I, I, I, I)#

R3 . In the case of
other classes in Tables 3 and 4, such that the restrictions in the second column are not empty,
γ satisfies one of the following conditions:

(d) γ = (μ, ψ) ∈ (I,A4), �(μ) = �(ψ), ord(μ, ψ) � 2;
(e) γ = (μ, ψ) ∈ (I,A2k�6), �(μ) = �(ψ);
(f) γ = (μ, ψ), ψ ∈ (3, 4, 0) ∪ (3, 5, 7) ∪ (3, 5, 0), �(μ) ⊂ L(ψ);
(g) γ = (ψ1, ψ2) ∈ (A2, A2), L(ψ1) = L(ψ2);
(h) γ = (ψ1, ψ2) ∈ (A2, A2k�4), �(ψ2) ⊂ L(ψ1);
(i) γ = (μ1, μ2, ψ) ∈ ((I, I)i, A2), i � 0, �(μ1), �(μ2) ⊂ L(ψ);
(j) γ = (μ1, μ2, ψ) ∈ ((I, I)i, A2k), i � 0, k � 2, the lines �(μ1), �(μ2), �(ψ) do not span

T0R
3.

Lemma 5.2 implies that in the cases (g), (h), (i), (j) the singularity γ adjoins the fencing
class (I, I, I, I)#

R3 and in the cases (d) and (e) it adjoins the fencing class (I � I � I)#
R3 . In the

remaining case (f) the singularity adjoins the fencing class (I, I, I, I)#
R3 by Lemma 5.4.



Page 16 of 21 M. ZHITOMIRSKII

6. Proof of Proposition 4.3

For singularities with immersed components only Proposition 4.3 is trivial. In what follows
we consider singularities with at least one singular component. For such singularities, in this
section we prove Proposition 4.3 modulo several lemmas which are proved in the next section.

Lemma 6.1. A singularity of a curve in Rn of multiplicity less than r does not adjoin the
class consisting of multigerms with r immersed components.

It is easy to check that this lemma implies the following corollary.

Corollary 6.2. Plane and space curve singularities of the class W do not adjoin the
fencing class (I, I, I, I)R2 and (I, I, I, I, I)R3 , respectively. A plane or space curve singularity
of the class A2k does not adjoin any of the fencing classes.

The next lemma excludes certain adjacencies of singularities consisting of immersed curve(s)
and a cusp.

Lemma 6.3. Let n = 2 or n = 3. Consider the arc

F : x = t2, y = t2k+1 (n = 2), F : x = t2, y = t2k+1, z = 0 (n = 3)

defined on [−1, 1]. Assume that a sequence of arcs Fi : [−1, 1] → R
n tends to the arc F in the

C3-topology and the singularity of Fi at 0 ∈ R
n consists of two immersed components μ

(1)
i , μ

(2)
i .

Then the following holds:
(1) the sequences of tangent lines �(μ(1)

i ), �(μ(2)
i ) tend to the line span(∂/∂x);

(2) if k = 1 then �(μ(1)
i ) �= �(μ(2)

i ) for sufficiently large i;
(3) if k = 1 and n = 3 then the sequence of planes spanned by �(μ(1)

i ) and �(μ(2)
i ) tends to

the plane span(∂/∂x, ∂/∂y).

The first two statements of Lemma 6.3 imply the absence of the following adjacencies.

Corollary 6.4. The plane curve singularities I � A2k and I � A2 do not adjoin the class
(I � I � I)R2 .

Corollaries 6.2 and 6.4 and the obvious adjacency (3, 4) ← (3, 5) reduce Proposition 4.3 for
plane curve singularities to the following lemma.

Lemma 6.5. The singularity (3, 5) does not adjoin the class (I � I � I)R2 .

Now we consider space curve singularities. Lemmas 6.1 and 6.3 imply the following statement.

Corollary 6.6. Let γ be a space curve multigerm of one of the classes

(I,A2k), k �= 2, (A2, A2k), ((I, I)0, A2k), ((I, I)i, A2).

If γ satisfies the restrictions in the second column of Tables 3 and 4 then it does not adjoin
any of the classes (I, I, I, I)#

R3 , I � I � I.
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Corollaries 6.2 and 6.6 and the obvious adjacencies (3, 4, 5) ← (3, 4, 0) ← (3, 5, 7) ←
(3, 5, 0) ← (3, 7, 8); (4, 5, 6) ← (4, 5, 7) ← (4, 6, 7) reduce Proposition 4.3 for space curve sin-
gularities to the following statement:

(*) none of the singularities (3, 7, 8), (4, 6, 7) and none of the singularities of the
classes W ∩ (I,A4),W ∩ (I, (3, 4, 5)),W ∩ (I, (3, 5, 0)) adjoins any of the fencing classes
(I � I � I)#

R3 , (I, I, I, I)#
R3 .

Remind that the intersection of W with a class in Tables 3 and 4 is the subclass consisting
of multigerms satisfying the restrictions in the second column. By Table 3, each of the classes
W ∩ (I,A4), W ∩ (I, (3, 4, 5)) consists of three singularities a,b, c and their coordinate free
definition in the second column implies the adjacencies a ← b ← c. The class W ∩ (I, (3, 5, 0))
consists of a single singularity. Therefore (*) reduces to the following statement.

(**) none of the following space curve singularities adjoins any of the fencing classes
(I � I � I)#

R3 , (I, I, I, I)#
R3 :

(3, 7, 8); (4, 6, 7); c ∈ (I,A4); c ∈ (I, (3, 4, 5)); W ∩ (I, (3, 5, 0)). (6.1)

The singularity W ∩ (I, (3, 5, 0)) consists of multigerms (μ, ψ) ∈ (I, (3, 5, 0)) such that �(μ) �⊂
L(ψ). Such multigerms do not adjoin the class (I, I, I, I)#

R3 by Lemma 6.5. They do not adjoin
the class I � I � I and consequently the class (I � I � I)#

R3 by the following lemma.

Lemma 6.7. Let Fi : [−1, 1] → R
3 be a sequence of arcs tending to the arc x = t3, y =

t5, z = 0 in the Cr-topology with sufficiently large r and such that the singularity of Fi at
0 ∈ R

3 consists of two immersed components μ
(1)
i , μ

(2)
i tangent to the same line �i. Then �i →

�(t3, t5, 0) = span(∂/∂x).

Now, let us prove the adjacencies

(I,A4) � c ←− (3, 7, 8) ←− (4, 6, 7); (I, (3, 4, 5)) � c ←− (4, 6, 7). (6.2)

The adjacency (3, 7, 8) ← (4, 6, 7) is realized by the deformation (εt3 + t4, t6, t7) (this germ
belongs to the class (3, 7, 8) if ε �= 0). The other two adjacencies are realized by the following
deformations of the curves (t3, t7, t8) and (t4, t6, t7):

x = (t − ε1)2(t − ε2), y = (t − ε1)5(t − ε2)2, z = (t − ε1)6(t − ε2)2; (6.3)

x = (t − ε1)3(t − ε2), y = (t − ε1)4(t − ε2)2, z = (t − ε1)5(t − ε2)2. (6.4)

In fact, the singularity at 0 ∈ R
3 of the curve (6.3) (respectively (6.4)) consists of an immersed

component μ and a singular component ψ ∈ A4 (respectively ψ ∈ (3, 4, 5)) such that �(μ) =
�(ψ) is the x-axes.

Adjacencies (6.2) and Lemma 6.7 reduce the claim (**) to the following statement.

Lemma 6.8. The singularity (4, 6, 7) does not adjoin any of the fencing classes (I � I �

I)#
R3 , (I, I, I, I)#

R3 .

7. Proof of the lemmas in Section 6

7.1. Auxiliary statements

Throughout the proof the following statements will be used.
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Proposition 7.1. Let P (t) = a0 + a1t + . . . + aktk, where k � 0 and ak �= 0. Let fi(t), t ∈
[−1, 1] be a sequence of functions tending to P (t) in the Ck-topology. Then for sufficiently
large i the set f−1(0) consists of at most k points.

Proposition 7.2. Let a
(1)
i , . . . , a

(p)
i be sequences of points in [−1, 1]. Let q, r � p. If the

sequence of functions

Fi(t) = (t − a
(1)
i ) · . . . · (t − a

(p)
i ) · Gi(t), t ∈ [−1, 1]

tends to the function tq in the Cr-topology then the sequences a
(1)
i , . . . , a

(p)
i tend to 0 and the

sequence Gi(t) tends to the function tq−p in the Cr−p topology.

To prove Proposition 7.1 note that the sequence of kth derivatives f
(k)
i (t) tends to a non-

zero constant. Therefore for sufficiently large i one has f
(k)
i (t) �= 0, t ∈ [−1, 1]. This implies

Proposition 7.1 by the classical Rolle theorem.
The first statement of Proposition 7.2 is also obvious: if one of the sequence a

(1)
i , . . . , a

(p)
i

does not converge to 0 then it has a limit point a∗ �= 0 which contradicts to the condition
Fi(t) → tq. To prove the second statement it suffices to consider the case p = 1. Thus we have
to prove the following assertion.

(*) if the sequence of points ai tends to 0 and the sequence of functions of the form
fi(t) = (t − ai) · φi(t), t ∈ [−1, 1] tends to 0 in the Cr�1-topology then the sequence of functions
φi(t), t ∈ [−1, 1], tends to 0 in the Cr−1-topology.

Fix δ ∈ (0, 1) and a number m such that |ai| < 1 − δ for any i > m. Consider the functions
φ̃i(t) = φi+m(t + ai) defined for t ∈ [−δ, δ]. Then the sequence of functions tφ̃i(t), t ∈ [−δ, δ]
tends to 0 in the Cr-topology and it follows that the sequence φ̃i(t) tends to 0 in the Cr−1-
topology (the latter implication is a known fact; we leave the proof to a reader). Therefore the
sequence φi(t), t ∈ [−δ/2, δ/2] tends to 0 in the Cr−1-topology and (*) follows.

7.2. Proof of Lemma 6.1

This lemma is almost straightforward corollary of Proposition 7.1.

7.3. Proof of Lemma 6.3

We will consider the case n = 3 (the proof for n = 2 is the same). The arcs Fi have the form

Fi : x(t) = Ri(t)Ai(t), y(t) = Ri(t)Bi(t), z(t) = Ri(t)Ci(t), (7.1)

Ri(t) =
(
t − a

(1)
i

) · (t − a
(2)
i

)
, a

(1)
i �= a

(2)
i . (7.2)

The lines �
(
μ

(1)
i

)
, �

(
μ

(2)
i

)
are spanned by the vectors

v
(j)
i = A(a(j)

i )
∂

∂x
+ B(a(j)

i )
∂

∂y
+ C(a(j)

i )
∂

∂z
, j = 1, 2. (7.3)

By Proposition 7.2 the sequences a
(1)
i , a

(2)
i tend to 0 and the sequences of functions

Ai(t), Bi(t), Ci(t) tend to 1, t2k−1, 0, respectively, in the C1-topology. Therefore the sequences
of vectors v

(1)
i and v

(2)
i tend to the vector ∂/∂x. This implies the first statement of the lemma.

Express now the vector v
(2)
i in the form

v
(2)
i = v

(1)
i + �vi · (a(2)

i − a
(1)
i ), (7.4)

�vi = A′(ti,1)
∂

∂x
+ B′(ti,2)

∂

∂y
+ C ′(ti,3)

∂

∂z
, (7.5)
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where ti,1, ti,2, ti,3 ∈ [a(1)
i , a

(2)
i ]. In the case k = 1 the sequences A′

i(t) and C ′
i(t) tend to 0 and

the sequence B′
i(t) tends to 1 in the C0-topology. Therefore �vi → ∂/∂y. This implies the

second and the third statements of the lemma.

7.4. Proof of Lemma 6.5

Let Fi : [−1, 1] → R
2 be a sequence of arcs tending to the arc x = t3, y = t5 in the Cr-

topology with sufficiently large r and such that the singularity of Fi at 0 ∈ R2 consists of
three immersed components μ

(1)
i , μ

(2)
i , μ

(3)
i . We have to prove that for sufficiently large i either

�
(
μ

(1)
i

) �= �
(
μ

(2)
i

)
or �

(
μ

(1)
i

) �= �
(
μ

(3)
i

)
.

We will prove this statement with r = 5. Assume, to get contradiction, that �(μ(1)
i ) =

�(μ(2)
i ) = �(μ(3)

i ) = �i for sufficiently large i. Then we may assume that this holds for all i.
Any sequence of 1-dimensional subspaces of T0R

2 has a convergent subsequence. Therefore
there is no loss of generality to assume that �i = �∗ is a fixed 1-dimensional subspace of T0R2.
Let

�∗ = span(a · ∂/∂x + b · ∂/∂y), (a, b) �= (0, 0).

The arcs Fi have the form

Fi : x = (t − a
(1)
i )(t − a

(2)
i )(t − a

(3)
i )Ai(t), y = (t − a

(1)
i )(t − a

(2)
i )(t − a

(3)
i )Bi(t),

where a
(1)
i , a

(2)
i , a

(3)
i are distinct points in (−1, 1). Introduce the sequence

Gi(t) = b · Ai(t) − a · Bi(t).

The lines �(μ(j)
i ) are spanned by the vectors Ai(a

(j)
i )∂/∂x + Bi(a

(j)
i )∂/∂y, j = 1, 2, 3, therefore

one has

Gi(a
(1)
i ) = Gi(a

(2)
i ) = Gi(a

(3)
i ) = 0. (7.6)

The assumption that Fi → (t3, t5) in the C5-topology implies by Proposition 7.2 that Ai → 1,
Bi → t2 in the C2-topology. Consequently the sequence Gi tends to b − at2 in the C2-topology.
Proposition 7.1 and (7.6) with a

(1)
i , a

(2)
i , a

(3)
i imply that a = b = 0 and we get contradiction.

7.5. Proof of Lemma 6.7

We will prove this lemma with r = 3. The arcs Fi have the form (7.1), (7.2) and the lines
�(μ(1)

i ) and �(μ(2)
i ) are spanned by the vectors (7.3). Express the vector v

(2)
i in the form (7.4),

(7.5). By Proposition 7.2 the assumption that Fi → (t3, t5, 0) in the C3-topology implies that
the sequences of points a

(1)
i , a

(2)
i tend to 0 and the sequences of functions Ai, Bi, Ci tend to

t, t3, 0, respectively, in the C1-topology. It follows that v
(1)
i , v

(2)
i → 0 and �vi → ∂/∂x. Since

the vectors v
(1)
i and v

(2)
i are proportional this implies the lemma.

7.6. Proof of Lemma 6.8

We have to prove the following statements for a sequence of arcs Fi : [−1, 1] → R3 tending
to the arc x = t4, y = t6, z = t7 in the Cr-topology with sufficiently large r:

(i) if the singularity of Fi at 0 ∈ R
3 consists of four immersed components μ

(1)
i , . . . , μ

(4)
i

then for sufficiently large i the lines �(μ(1)
i ), . . . , �(μ(4)

i ) span T0R
3;

(ii) if the singularity of Fi at 0 ∈ R
3 consists of three immersed components μ

(1)
i , μ

(2)
i , μ

(3)
i

tangent to the same line �i then for sufficiently large i the 2-jet of the multigerm
(μ(1)

i , μ
(2)
i , μ

(3)
i ) is not planar.
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Proof of (i). We will prove (i) with r = 7. Assume, to obtain a contradiction, that the lines
�(μ(1)

i ), . . . , �(μ(4)
i ) do not span T0R3 for arbitrarily large i. Then these lines are contained

in some 2-dimensional subspace Li ⊂ T0R
3. The sequence Li has a convergent subsequence,

therefore there is no loss of generality to assume that the lines �(μ(1)
i ), . . . , �(μ(4)

i ) are contained,
for all i, in a fixed 2-dimensional subspace

L∗ ⊂ T0R
3, L∗ = ker(a dx + b dy + c dz), (a, b, c) �= (0, 0, 0).

The arcs Fi have the form

x = Ri(t)Ai(t), y = Ri(t)Bi(t), z = Ri(t)Ci(t),

Ri(t) = (t − a
(1)
i )(t − a

(2)
i )(t − a

(3)
i )(t − a

(4)
i ),

where a
(1)
i , . . . , a

(4)
i are distinct points in (−1, 1). Let

Gi(t) = a · Ai(t) + b · Bi(t) + c · Ci(t).

The assumption �(μ(j)
i ) ⊂ L∗ means the relations

Gi(a
(1)
i ) = Gi(a

(2)
i ) = Gi(a

(3)
i ) = Gi(a

(4)
i ) = 0. (7.7)

By Proposition 7.2 the condition that Fi → (t4, t6, t7) in the C7-topology implies that the
sequences of functions Ai, Bi, Ci tend to 1, t2, t3, respectively, in the C3-topology. Consequently
the sequence Gi(t) tends to a + bt2 + ct3 in the C3-topology. Therefore by Proposition 7.1
relation (7.7) with distinct points a

(j)
i , j = 1, 2, 3, 4 implies that a = b = c = 0 and we obtain

the contradiction.

Proof of (ii). We will prove (ii) with r = 8. Arguing like in the proof of of Lemma 6.7 it
is easy to prove that �i → span(∂/∂x) and then there is no loss of generality to assume that
�i = span(∂/∂x) for all i. Assume now, to get contradiction, that there is a sequence Si of
non-singular surfaces such that ord(μ(j)

i , Si) � 2, j = 1, 2, 3. Then there is no loss of generality
to assume also that the tangent planes T0Si are the same for all i. Since �i = span(∂/∂x) ⊂ Li

then there exist fixed numbers (b∗, c∗) �= (0, 0) such that

Si = {(x, y, z) : b∗y + c∗z + fi(x, y, z) = 0}, j1fi = 0.

The arcs Fi have the form

Fi : x = Ri(t)Ai(t), y = R2
i (t)Bi(t), z = R2

i (t)Ci(t), (7.8)

Ri(t) = (t − a
(1)
i )(t − a

(2)
i )(t − a

(3)
i ),

where a
(1)
i , a

(2)
i , a

(3)
i are distinct points in (−1, 1). It is easy to calculate that the assumption

ord(μ(j)
i , Si) � 2 means that the functions

Gi(t) = riA
2
i (t) + b∗Bi(t) + c∗Ci(t), ri = (1/2) · (∂2fi/∂x2)(0)

satisfy the relations

Gi(a
(1)
i ) = Gi(a

(2)
i ) = Gi(a

(3)
i ) = 0. (7.9)

Now we use the condition that Fi → (t4, t6, t7) in the C8-topology. Proposition 7.2 implies that
Ai → t, Bi → 1, Ci → t in the C2-topology. If the sequence ri is not bounded then then the
sequence Gi(t)/ri has a subsequence tending to t2 in the C2-topology which contradicts to (7.9)
by Proposition 7.1. If the sequence ri is bounded then the sequence Gi(t) has a subsequence
tending to r∗t2 + b∗ + c∗t in the C2-topology, for some finite r∗. By Proposition 7.1 and (7.9)
this contradicts to the condition (b∗, c∗) �= (0, 0).



FULLY SIMPLE SINGULARITIES Page 21 of 21

Acknowledgements. I am thankful to V.Goryunov, G.Ishikawa, D.Mond, R.Montgomery
and V.Zakalyukin for stimulating questions and comments.

References

1. V. I. Arnol’d, ‘Simple singularities of curves’, Proc. Steklov Inst. Math. 226 (1999) 20–28.
2. V. I. Arnol’d, A. M. Varchenko and S. M. Gusein-Zade, Singularities of differentiable maps, Vol.1

(Birkhauser, Basel, 1985).
3. J. W. Bruce and T. Gaffney, ‘Simple singularities of maps (C, 0) → (C2, 0)’, J. London Math. Soc. Ser.

(2) 26 (1982) 464–474.
4. C. G. Gibson and C. A. Hobbs, ‘Simple singularities of space curves’, Math. Proc. Cambridge. Philos.

Soc. 113 (1993) 297–310.
5. P. A. Kolgushkin and R. R. Sadykov, ‘Classification of simple multigerms of curves’, Russian Math.

Surveys 56 (2001) 1166–1167.
6. P. A. Kolgushkin and R. R. Sadykov, ‘Simple singularities of multigerms of curves’, Rev. Mat. Complut.

14 (2001) 311–344.

M. Zhitomirskii
Department of Mathematics
Technion
32000 Haifa
Israel

mzhi@techunix·technion·ac·il


