106936: Topics in Analysis 3. HW-2

1. Find the first focus number $f_{1}=f_{1}(a, b, c)$ for the vector field

$$
\dot{x}_{1}=x_{2}, \quad \dot{x}_{2}=-x_{1}+a x_{1}^{2}+b x_{1} x_{2}+c x_{2}^{2}
$$

with parameters a, b, c.
2. Consider the vector field

$$
\dot{x}_{1}=x_{2}+P^{(4)}\left(x_{1}, x_{2}\right)+P^{(5)}\left(x_{1}, x_{2}\right), \quad \dot{x}_{2}=-x_{1}+Q^{(4)}\left(x_{1}, x_{2}\right)+Q^{(5)}\left(x_{1}, x_{2}\right)
$$

where $P^{(4)}$ and $Q^{(4)}$ are homogeneous degree 4 polynomials and $P^{(5)}$ and $Q^{(5)}$ are homogeneous degree 5 polynomials. The first focus number is certainly 0. Find the second focus number as a function of the coefficients of the polynomials.
3. Develop the theory of double Andronov-Hopf bifurcation for the case that the second focus number is positive. You should decompose the $\left(\epsilon_{1}, \epsilon_{2}\right)$-plane onto few regions differing by the number of limit cycles, to draw the phase portrait for $\left(\epsilon_{1}, \epsilon_{2}\right)$ in each of these regions, and to explain what happens when the parameters $\epsilon_{1}, \epsilon_{2}$ change in time such that the curve $\left(\epsilon_{1}(t), \epsilon_{2}(t)\right)$ crosses the boundary between the regions.

