106803. Homework 3. Deadline: April 29.

1. Prove that the second coordinate of the growth vector of a $(3, n)$ distribution does not depend on the basis of vector fields used in the definition of the growth vector.
2. Prove that the third coordinate of the growth vector of a $(2, n)$ distribution does not depend on the basis of vector fields used in the definition of the growth vector.
3. Give an example of a $(2,5)$ distribution with the growth vector $\left(2,3, d_{3}, d_{4}, \ldots\right)$ where $d_{i}=4$ for any $i \geq 3$ at any point of \mathbb{R}^{5} (such distribution is not bracket generating).
4. Give an example of a bracket generating $(2,4)$ distribution with the growth vector at $0 \in \mathbb{R}^{4}$
(a) $(2,2,2,4)$
(b) $(2,3,3,4)$
5. Prove the formula $\left[V_{1}, V_{2}\right](f)=V_{1}\left(V_{2}(f)\right)-V_{2}\left(V_{1}(f)\right)$ (here V_{1}, V_{2} are vector fields, f is a function).
6. Write down the vector field $\left[V_{1},\left[\left[V_{1}, V_{2}\right],\left[V_{1},\left[V_{1}, V_{2}\right]\right]\right]\right]$ as a linear combination of the vector fields of the form $\left[V_{i_{1}},\left[V_{i_{2}},\left[V_{i_{3}},,\left[\cdots\left[V_{i_{m}}\right]\right] \cdots\right]\right.\right.$ where $i_{1}, \ldots, i_{m} \in\{1,2\}$.
7. Compute (using the formula $\left[V_{1}, f V_{2}\right]=V_{1}(f) V_{2}+f\left[V_{1}, V_{2}\right]$)

$$
\left[\left(x_{1}^{2}+x_{2}^{2}\right) V_{1}+x_{1} x_{3} V_{2}+x_{2} x_{3} V_{3}, x_{1} x_{2} V_{1}+x_{1} x_{2} x_{3} V_{2}+x_{3}^{2} V_{3}\right]
$$

where

$$
V_{1}=\frac{\partial}{\partial x_{1}}, \quad V_{2}=\frac{\partial}{\partial x_{2}}+x_{1} \frac{\partial}{\partial x_{3}}, \quad V_{3}=x_{2} \frac{\partial}{\partial x_{3}} .
$$

