1. Homework 3. Systems of linear equations: part 1

Solve problems $1.2,2.2,3.2,4.2,4.4,5.2,5.4,5.6,5.8$. (The other problems: for tirgul).

1. Write the following systems in the form $A x=b$, where A is a matrix and b is a vector
1.1. $x_{2}-x_{3}=1, x_{1}+x_{2}=2, \quad x_{2}-x_{4}=0$
1.2. $x_{2}+x_{3}=0, x_{3}-x_{1}=0, \quad x_{1}+x_{2}+2 x_{3}=1, \quad x_{2}+4 x_{3}=2$.
2. Let

$$
A=\left(\begin{array}{cccc}
4 & i & 2 & 0 \\
2 & 0 & i & 0 \\
3 & 4 & 1 & 1
\end{array}\right), B=\left(\begin{array}{ccc}
1 & 1 & 1 \\
3 & 0 & 4 \\
1 & 2 & 1
\end{array}\right), C=\left(\begin{array}{lll}
1 & 0 & 1 \\
2 & 3 & 0 \\
4 & 1 & 1
\end{array}\right), x=\left(\begin{array}{c}
1 \\
2 \\
0 \\
-1
\end{array}\right)
$$

2.1. Find $C \cdot(B \cdot(A x))$. 2.2. Find $B \cdot(C \cdot(A x))$.
3.1. Let A be a 3×3 matrix such that $A_{i j}=0$ if $i \geq j$ and let $x \in \mathbb{R}^{3}$.

What can you say about the vector $A \cdot x$? About the vector $A \cdot(A x)$?
About the vector $A \cdot(A \cdot(A x))$?
3.2. Let A be a 4×4 matrix such that $A_{i j}=0$ if $i \leq j$. Prove that $A \cdot(A \cdot(A \cdot(A x)))=0$ for any $x \in \mathbb{R}^{4}$.
4. LEDAREG the following matrices (with parameter $a \in \mathbb{R}$) and find their rank. The rank might depend on a.
4.1. $\left(\begin{array}{llll}2 & 1 & 2 & 4 \\ 3 & 0 & 0 & 6 \\ a & 0 & 0 & 8\end{array}\right) 4.2\left(\begin{array}{llll}2 & 1 & 0 & 5 \\ 3 & 0 & 1 & 7 \\ 6 & 0 & 2 & a\end{array}\right) 4.3\left(\begin{array}{lll}2 & 1 & 0 \\ 4 & 2 & 1 \\ 2 & 1 & a \\ 4 & 2 & a\end{array}\right) 4.4\left(\begin{array}{lll}2 & 1 & 0 \\ 4 & 2 & 1 \\ 2 & 1 & 3 \\ a & 3 & 0\end{array}\right)$
5. For which $a, b \in \mathbb{R}$ the rank of the following matrices is equal
(a) to 1 (b) to 2 (c) to 3 ?
5.1. $\left(\begin{array}{lll}2 & 3 & 1 \\ 3 & a & b\end{array}\right)$
5.2. $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ a & b & 3\end{array}\right)$
5.3. $\left(\begin{array}{lll}a & 0 & 1 \\ 0 & 0 & b \\ 1 & 1 & 1\end{array}\right)$
5.4. $\left(\begin{array}{ccc}0 & a & b \\ -a & 0 & 0 \\ -b & 0 & 0\end{array}\right)$
5.5. $\left(\begin{array}{ll}1 & a \\ b & 1 \\ 2 & 0\end{array}\right)$
5.6. $\left(\begin{array}{llll}a & 1 & 0 & 1 \\ 0 & 1 & 0 & b \\ 2 & 0 & 1 & 0\end{array}\right)$
5.7. $\left(\begin{array}{cccc}a^{2}-1 & 1 & 0 & 2 \\ a^{2}-2 & 1 & 1 & 0 \\ b & 1 & 0 & 0\end{array}\right) \quad$ 5.8. $\left(\begin{array}{cc}a & b \\ -a & 2 b+1\end{array}\right)$

