Math 106A. Fall 2008. M. Zhitomirskii
 Homework 4. 3 problems. Due on Friday Oct 31, 9:30 am

1. Consider the system $x_{1}^{\prime}=x_{1}-2 x_{2}, \quad x_{2}^{\prime}=a x_{1}+3 x_{2}$ with a parameter $a \in \mathbb{R}$.
1.1. For which values of a the phase portrait is a source? sink? saddle? spiral source? spiral sink? center? contains a line of equilibrium points?
1.2. Let $a=13$. Draw the oriented phase portrait. Do not forget to determine whether the phase curves go clockwise or anticlockwise. Find the natural period of oscillations.
1.3. Let $a=13$. Find the solution satisfying the initial conditions $x_{1}(0)=x_{2}(0)=1$. For this solution, find all t such that $x_{1}(t)=0$ and all t such that $x_{2}(t)=0$.
1.4. Draw the phase portrait for $a=0$.
1.5. Draw the phase portrait for $a=-2$.
2. Consider the system $x_{1}^{\prime}=3 x_{1}+a x_{2}, \quad x_{2}^{\prime}=13 x_{1}-3 x_{2}$ with a parameter $a \in \mathbb{R}$.
2.1. For which values of a the phase portrait is a source? sink? saddle? spiral source? spiral sink? center? contains a line of equilibrium points?
2.2. Let $a=-1$. Draw the oriented phase portrait. Do not forget to determine whether the phase curves go clockwise or anticlockwise. Find the period of oscillations.
2.3. Let $a=-1$. Find the solution satisfying the initial conditions $x_{1}(0)=x_{2}(0)=1$. For this solution, find all t such that $x_{1}(t)=x_{2}(t)$. Draw the graphs of the function $x_{1}(t)$ and $x_{2}(t)$.
3. Consider the system $x_{1}^{\prime}=3 x_{1}-x_{2}, \quad x_{2}^{\prime}=13 x_{1}+a x_{2}$ with a parameter $a \in \mathbb{R}$.
3.1. For which values of a the phase portrait is a source? sink? saddle? spiral source? spiral sink? center? contains a line of equilibrium points?
3.2. Let $a=-4$. Draw the oriented phase portrait. Do not forget to determine whether the phase curves go clockwise or anticlockwise. Find the natural period of oscillations.
