106803. Homework 4. Deadline: May 25.

1. Find the form of the vector field $V=\frac{\partial}{\partial x_{1}}+x_{1}^{2} \frac{\partial}{\partial x_{2}}+x_{1} x_{2} \frac{\partial}{\partial x_{3}}$ in the new coordinates y_{1}, y_{2}, y_{3} (near $0 \in \mathbb{R}^{3}$) such that
a) $x_{1}=y_{1}+y_{2}^{2}, \quad x_{2}=y_{2}+y_{3}^{2}, \quad x_{3}=2 y_{3}$
b) $y_{1}=x_{1}+x_{2}^{2}, \quad y_{2}=x_{2}+x_{3}^{2}, \quad y_{3}=2 x_{3}$.
2. Find a coordinate system y_{1}, y_{2}, y_{3} near $0 \in \mathbb{R}^{3}$ such that the following vector fields take the form $\frac{\partial}{\partial y_{1}}$:
a) $V=\frac{\partial}{\partial x_{1}}+x_{1}^{2} \frac{\partial}{\partial x_{2}}+x_{1} x_{2} \frac{\partial}{\partial x_{3}}$
b) $V=\left(1+x_{1}\right) \frac{\partial}{\partial x_{1}}+\frac{\partial}{\partial x_{2}}$
c) $V=\frac{\partial}{\partial x_{1}}+x_{1} \frac{\partial}{\partial x_{2}}+x_{1} x_{2} \frac{\partial}{\partial x_{3}}$

The answer can be written in the form
$x_{1}=\Phi_{1}\left(y_{1}, y_{2}, y_{3}\right), x_{2}=\Phi_{2}\left(y_{1}, y_{2}, y_{3}\right), x_{3}=\Phi_{3}\left(y_{1}, y_{2}, y_{3}\right)$.
3. Find a global coordinate system y_{1}, y_{2}, y_{3} on \mathbb{R}^{3} such that the following vector fields have the form $\lambda_{1} \frac{\partial}{\partial y_{1}}+\lambda_{2} \frac{\partial}{\partial y_{2}}+\lambda_{3} \frac{\partial}{\partial y_{3}}$ for some $\lambda_{1}, \lambda_{2}, \lambda_{3} \in \mathbb{R}$:
a) $V=\left(2 x_{1}+3 x_{2}+x_{3}\right) \frac{\partial}{\partial x_{1}}+\left(x_{2}+5 x_{3}\right) \frac{\partial}{\partial x_{2}}+3 x_{3} \frac{\partial}{\partial x_{3}}$
b) $V=\left(a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}\right) \frac{\partial}{\partial x_{1}}+\left(a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}\right) \frac{\partial}{\partial x_{2}}+$ $+\left(a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}\right) \frac{\partial}{\partial x_{3}}$, where the 3×3 matrix $\left(a_{i j}\right)$ has eigenvectors
$\left(\begin{array}{lll}1 & 2 & 4\end{array}\right),\left(\begin{array}{lll}0 & 1 & 1\end{array}\right),\left(\begin{array}{lll}1 & 1 & 1\end{array}\right)$.
4. Recall that a (k, n) distribution $D=\operatorname{span}\left(V_{1}, \ldots, V_{k}\right)$ is called integrable if $\left[V_{i}, V_{j}\right] \in \operatorname{span}\left(V_{1}, \ldots, V_{k}\right)$ for any $i, j=1, \ldots, k$ and at any point of \mathbb{R}^{n}. Prove the following theorem (begin with $k=2, n=3$, after that generalize to any k, n):
Theorem (Frobenius) Any C^{∞} integrable (k, n) distribution is locally (near any point of $\left.\mathbb{R}^{n}\right) C^{\infty}$-diffeomorphic to the distribution $\operatorname{span}\left(\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}, \ldots, \frac{\partial}{\partial x_{k}}\right)$.
5. Prove the following theorem.

Theorem (J. Martinet, 1970). Any $C^{\infty}(2,3)$ distribution on \mathbb{R}^{3} with the growth vector $(2,2,3)$ at the point $0 \in \mathbb{R}^{3}$ is locally (near $0 \in \mathbb{R}^{3}$) C^{∞}-diffeomorphic to the distribution $\operatorname{span}\left(\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}+x_{2}^{2} \frac{\partial}{\partial x_{3}}\right)$.

Proving this theorem you should use the following lemma from singularity theory.
Lemma. A C^{∞} function $f\left(x_{1}, x_{2}, x_{3}\right)$ such that

$$
f(0,0,0)=\frac{\partial f}{\partial x_{1}}(0,0,0)=0, \quad \frac{\partial^{2} f}{\partial x_{1}^{2}}(0,0,0) \neq 0
$$

can be reduced by a local (near $0 \in \mathbb{R}^{3}$) change of coordinates of the form

$$
x_{1}=\phi\left(y_{1}, y_{2}, y_{3}\right), x_{2}=y_{2}, x_{3}=y_{3}
$$

to the form $\pm y_{1}^{2}+g\left(y_{2}, y_{3}\right)$ with some function $g\left(y_{1}, y_{2}\right)$.

