Homework 4. Systems of linear equations: part 2

Assignment: solve all problems including those which will be solved in tirgulim

Notations: \exists = exists, \forall = for all = for any.

1. Which of the following statements are right for any 3×4 matrix A?

1.1 rank A < 4

1.2. If rank A = 3 then the system Ax = b has unique solution $\forall b \in \mathbb{R}^3$

1.3. If rank A = 2 then the system Ax = b has ∞ solutions $\forall b \in \mathbb{R}^3$

1.4. The system Ax = 0 has ∞ solutions

2. Which of the following statements are right for any 4×3 matrix A?

- 2.1. rank A < 4
- 2.2. If rank A = 3 then the system Ax = bhas at least one solution $\forall b \in \mathbb{R}^4$
- 2.3. If rank A = 2 then $\exists b \in \mathbb{R}^4$ such that the system Ax = b has unique solution
- 2.4. If $A \neq 0$ then the system Ax = 0 has unique solution.

3. In each of the 6 statements given below

A is an $m \times n$ matrix and $b \in \mathbb{R}^m$.

Which of the statements are WRONG in the cases

(a) m = n (b) m < n (c) m > n?

Note that the problem contains $3 \times 6 = 18$ questions.

A1. $\exists A \text{ and } \exists b \text{ such that the system } Ax = b \text{ has unique solution.}$

B1. $\exists A$ such that the system Ax = b has unique solution $\forall b$.

A2. $\exists A \neq 0$ and $\exists b \neq 0$ such that the system Ax = b has no solutions.

B2. $\exists A \neq 0$ such that the system has no solutions $\forall b \neq 0$.

A3. $\exists A \neq 0 \text{ and } \exists b \neq 0 \text{ such that the system } Ax = b \text{ has } \infty \text{ solutions.}$

B3. $\exists A \text{ such that the system } Ax = b \text{ has } \infty \text{ solutions } \forall b.$

4. Find conditions on the parameters $a, b \in \mathbb{R}$ such that the following system has (a) no solution (b) unique solution (c) ∞ solutions

- 4.1. $2x_1 + 3x_2 + 5x_3 = 10$, $ax_2 + x_3 = b$, $2x_2 + 3x_3 = 1$
- 4.2. $2x_1 + 3x_2 + 5x_3 = 10$, $7x_2 + 8x_3 = 12$, $ax_1 + x_2 = b$
- 4.3. $ax_1 + x_2 = 1$, $2x_1 + x_3 = b$, $x_1 + x_2 x_3 = 0$
- 4.4. $x_1 + x_2 2x_3 = 0$, $ax_1 x_2 + x_3 = 1$, $bx_1 x_2 x_3 = 0$
- 4.5. $x_1 + x_2 x_4 = 0$, $x_2 x_3 = 1$, $x_1 + ax_3 + bx_4 = 1$
- 4.6. $x_1 x_2 + x_3 = 1$, $2x_1 x_2 x_3 = a$, $x_1 + 2x_2 - 3x_3 = b$, $2x_1 - x_2 - x_3 = 1$