Homework 5. Deadline: Thursday, June 16

1. Find any curve tangent to the distribution $\operatorname{span}\left(\partial / \partial x_{1}, \partial / \partial x_{2}+x_{1} \partial / \partial x_{3}\right)$ which joins $(0,0,0)$ to $(1,1,1)$ and find the length of this curve in the sub-Riemannian metrics defined by the condition that $\partial / \partial x_{1}, x_{1} \partial / \partial x_{1}+\partial x_{2}+x_{1} \partial / \partial x_{3}$ is the orthonormal basis of vector fields.
2. Consider the control system $\dot{x}_{1}=u, \dot{x}_{2}=x_{1}$ where $u=u(t)$ is the control $(t$ is the time). Let T^{*} be the infimum of time which one needs to join $(0,0)$ to $(1,-1)$ under constraint

$$
\begin{equation*}
\left|x_{1}(t)\right| \leq 10,\left|x_{2}(t)\right| \leq 10 . \tag{1}
\end{equation*}
$$

Find T^{*} and for any positive ϵ find a curve which satisfies (1) and joins $(0,0)$ to $(1,-1)$ in time $T<T^{*}+\epsilon$. Draw this curve in the (x_{1}, x_{2})-plane.
3. Solve problem 2 under constraint $|u(t)| \leq 10$ instead of (1).

