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Lecture 1. Ideology, terminology, main notions and definitions

I will start (section 1) with explanation of the most popular in singularity theory
word “generic”. In section 2 I will explain the first principle: which results are worth
to obtain and which are not. In section 3 I define singularity classes in classification
problems and their codimensions. In sections 4 and 5 I continue the main notions
defining normal forms and modality. In section 6 I explain the second principle on
the necessity to study families when attacking a non-generic singularity class. In
section 7 I define versal deformations. The last section 8 is an example related to the
Gauss method for solving systems of linear equations illustrating the significance of
versal deformations. A good part of other illustrating examples also concern linear
algebra and only few ones concern local analysis. A number of examples from local
analysis will be given in Lectures 2 and 3. Unfortunately in three lectures I have
no time to explain the Andronov-Hopf bifurcation in dynamical systems in terms
of versal deformations - one of the most bright application of the ideology of
singularity theory.

1. What does “generic” mean

I will start with the most commonly used word in singularity theory, the word
“generic”. To explain this word let me give few examples of sentences that have no
sense:

1.1. Let A be a generic 2× 2 matrix

1.2. Let f(x) be a generic function.

And now the sentences (statements) with “generic” that have a precise sense:

2.1. A generic 2× 2 matrix is non-singular

2.2. A generic 2× 2 matrix has non-zero trace

2.3. If f(x) is a generic C∞ function and f(x0) = 0 then f ′(x0) 6= 0.

From these examples you see that “generic” is not a characteristic of an individual
object; it is characteristic of a property meaning that this property holds for open
and dense set of objects. Statement 2.1 , respectively statement 2.2 is a short form
to say that the set of non-singular 2 × 2 matrices, respectively the set of 2 × 2
matrices with non-zero trace, is open and dense in the space of all 2× 2 matrices.
Statement 2.3 is a short way to say that union of the set of C∞ functions which do
not vanish at any point with the set of C∞ functions which vanish at some point
or points and whose derivative does not vanish at these points is open and dense
in the space of all C∞ functions.

We see that “generic” requires topology. In statements 2.1 and 2.2 we deal with
a finite dimensional vector space of objects and there is no problem with topology;
these statements are obvious. Statement 2.3 is not that obvious and whether it
is true or not depends on topology. If we want it to be true the C0 topology is
not enough; C1 topology is enough if the argument x varies on a compact set; if it
varies on the whole line R then the statement 2.3 is true only in a rather special
topology called weak Whitney topology.
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2. Principle 1: the order of obtaining results

Studying the behavior of a fly in a room it is natural to start with the case that
the fly in in the air, not in the floor, or ceiling, or one of the walls. After investigating
the case that the fly is in the air, it is natural to continue the investigation by the
case that it is in the floor, or the ceiling, or one of the walls, but not in one of the
lines that boundaries two of these planes. After that it is natural to consider the
case that the fly is in one of these lines, but not in one of the corners. And the final
step is the case that the fly is in one of the corners of the room.

Principle. Any result in the study of objects of a fixed set O, along with previ-
ously obtained (known) results should concern an open set of objects in O (for some
problems a stronger requirement: open and dense set of objects).

In terms of a fly in a room this principle forbids to study the behavior of a fly in
the boundary ` of the floor F and a wall W unless we know its behavior in F − `
and W − `. Here are some mathematical situation violating the given principle:

1. I do not know anything about the geometry of linear operators on Rn with
n distinct eigenvalues and decided to study the case that there are n − 1 distinct
eigenvalues;

2. Let f(x) be a C∞ function, f ′(x0) = 0. I know if x0 is a local min or local
max point if f ′′(0) 6= 0, I know nothing about the case f ′′(x0) = 0 and decided to
attack the case f ′′(0) = f ′′′(x0) = 0.

Remark. It is not likely that the given principle is violated by somebody in
the way 1. or 2. Nevertheless, in many areas of math one can find a lot of works
where this principle is violated. These work include some extremely important for
the whole math famous works. This does not mean that the principle is wrong.
This means that it is “a way of life”, or “religion” which might work for you (your
research) well or not, depending on the math you are doing and on the character of
results you wish to obtain. No way of life is an obligation, but it is worth to know
the potential advantages of main ways of life. I am going to give an idea about
the advantages of the given principle (and related principles) for the classification
problems of linear algebra and local analysis. In these areas the advantages are so
big and clear that following the principle in these problems is almost an obligation
for those who wants their research to be respected.

Remark. Applying the principle one should be absolutely sure what is the class
O of objects he is working with. The principle assumes that this class is important
(interesting, significant), but does not formalize what does it mean. It does not say
what is more important: to study the behavior in a room of a fly or a cockroach. A
fly should not be confused with cockroach. In the case of cockroach a generic case
is the case that it is in the floor, or the ceiling, or in one of the walls.

Remark. In many cases the situation is as follows. One starts with an impor-
tant class of objects O and comes to conclusion that studying O requires studying
another class of different objects Õ, due to some natural map F : O → Õ. In this
case the subclass F (O) ⊂ Õ becomes important even if it is a very small subclass
of Õ and according to the principle any new result for S along with already known
ones should concern an open set of objects in F (O) with respect to the topology
induced by the topology of O and the map F . Think on Hamiltonial vector fields -
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the object occurring in the study of functions on a symplectic space. The principle
does not throw away Hamiltonian vector fields!

3. Singularity classes in classification problems

Classification problem is the problem of distinguishing non-equivalent objects of
a given class O with respect to a given equivalence relation. The initial data is not
only O and an equivalence relation but also a topology in O.

A singularity class is a set S ⊂ O closed with respect to the equivalence: if a ∈ S
then the whole orbit of a (i.e. the set of objects equivalent to a) belongs to S.

Usually O is a manifold (in many cases a vector space), a singularity class S
is a smooth or stratified submanifold of O, and one can define the codimension of
S. In problems of linear algebra dimO < ∞ and codimS = dimO − dimS. If S
is a stratified submanifold (the union of a finite number of smooth submanifolds
satisfying certain “natural” requirements which usually hold) then, by definition,
codimS = min of codimensions of the strata. Roughly speaking, it is the number
of independent conditions distinguishing S in O. One should not take into account
generic conditions (conditions which hold for open sets).

Example 1. Let O be the vector space of linear transformations T : Rn → Rm

and T1 ∼ T2 if U1T1 = T2U2 for some non-singular linear operators U1 : Rn → Rn

and U2 : Rm → Rm. Let Sr be the set of linear operators of rank r and let S≤r be
the set of linear operators of rank ≤ r. Then Sr and S≤r are singularity classes.
The class Sr, respectively S≤r, is a smooth, respectively stratified submanifold of
O (to see it think about the case m = n = 2, r = 1.)

Corank product theorem. In this example,
codimSr = codimS≤r = (m− r)(n− r).

In problems of local analysis dimO = ∞, but the codimensions of most important
singularity classes S is finite. In this case, like in finite dimensional problems,
the codimension of S is, roughly speaking, the number of independent conditions
distinguishing S in O. A precise definition requires reduction from O to a finite
dimensional space of jets (usually singularity classes are distinguished by conditions
on k-jet of an object in O, for some k).

Example 2. In the problem of classification of functions f : R→ R with respect
to the group of diffeomorphisms of the sourse space (f is equivalent to f̃ if f(Ψ) = f̃
for some diffeomorphism Ψ of R) the set of function germs f such that f ′(x0) = 0
for some x0 ∈ R is a singularity class of codimension 0; the set of function f such
that

(1) f ′(x0) = f ′′(x0) = · · · = f (k)(x0) = 0

for some x0 ∈ R is a singularity class of codimension k − 1.

To understand this example note that (1) is a system of k equations for one
unknown x0. The codimension is the difference between the number of equations
and the number of unknowns.

Example 3. In the problem of classification of functions f : R2 → R with
respect to the group of diffeomorphisms of the source space R2, the set of functions
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f such that f ′(a) = f ′′(a) = 0 for some a ∈ R2 is a singularity class of codimension
3. 1

A singularity class S1 adjoins a singularity class S2 (notation: S2 ← S1) if S1

belongs to the closure of S2 (as submanifolds of O). For example, one has the
adjacency the class Sr ← Sr+1 in Example 1.

The principle of section 2 can be formulated as follows:

Having a decomposition of O onto singularity classes do not attack a singularity
class S before obtaining results for all singularity classes that S adjoins.

Terminology. In many papers “singularity class” = “case”. Generic case (see
section 1) = a dense singularity class of codimension 0.

4. Normal forms. Modality

A normal form of a single object does not exist. Any normal form always serves
for some set of objects and speaking about normal forms without mentioning this
set is impossible.

A normal form (serving) for a set of objects S ⊂ O is any set N ⊂ S such that
any a ∈ S is equivalent to some b ∈ N . A normal form N is called exact if any
a ∈ S is equivalent to one and only one b ∈ N (or, what is the same, if no two
different objects on N are equivalent). Otherwise N is called preliminary normal
form (sometimes pre-normal form).

It is natural to construct normal forms serving for singularity classes. If N is an
exact normal form serving for some singularity class S, it might be finite, it might
be parameterized by a finite number of numerical parameters, and in classification
problems of local analysis it might be parameterized by functions. Any of these
possibilities holds for some classification problems even if S is a generic singularity
class.

The given above principle restricted to the problem of constructing normal forms
is as follows:

any new normal form (for some singularity class) along with previously known
normal forms (for other singularity classes) should serve for an open singularity
class.

Definition. The modality of an object a ∈ O is the number of numerical
parameters of an exact normal form N serving for a sufficiently small neighborhood
of a in O. The object a is simple if it has zero modality (i.e. N is a finite set). If
a is contained in some singularity class S then the modality of a within singularity
class S is the number of numerical parameters of an exact normal form N serving
for the set U ∩ S where U is a sufficiently small neighborhood of a in O.

Distinguishing simple objects in many classification problems and studying the
singularity classes {objects of a fixed modality} might be a very important problem,
tied with many problems of various areas of math. The classical example is the
famous simple A-D-E singularities of functions.

1Here f ′ =
( ∂f

∂x1
, ∂f

∂x2

)
and f ′′ =




∂2f

∂x2
1

∂2f
∂x1∂x2

∂2f
∂x1∂x2

∂2f

∂x2
2
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5. Illustrating examples

Example 5. Let O be the vector space of linear operators T : Rn → Rm. In the
problem of classifying O with respect to linear transformations of both the source
and the target space, the single linear operator

x → Arx, Ar =
{ (

Ir 0
0 0

) }

(Ir is the identity r× r matrix) is an exact normal form serving for the singularity
class of linear operators of rank r. An exact normal form N serving for the whole
O consists of q + 1 linear operators where q = min(n,m), for example

N = {x → Aix, i = 0, ..., q}
(A0 is the zero matrix). The modality of any T ∈ O is 0.

Example 6. Let O be the vector space of linear operators T : C2 → C2. In the
problem of classifying O with respect to conjugacy (the same linear transformation
in the source and the target space), the set

N1 =
{ (

λ1 0
0 λ2

)
, λ1, λ2 ∈ C, λ1 6= λ2

}

is a normal form serving for the singularity class of linear operators with two distinct
eigenvalues, the set

N2 =
{ (

λ 1
0 λ

)
,

(
λ 0
0 λ

)
, λ ∈ C

}

is a normal form serving for the singularity class of linear operators with one eigen-
value of multiplicity 2. The set {N1∪N2} is a normal form serving for the whole Q.
These normal forms are “almost exact” (there is a possibility to replace the eigen-
values); exact normal forms have the same number of parameters. The modality of
any linear operator T ∈ O is equal to 2.

Example 7. Let O be the vector space of real 3 × 2 matrices. Consider the
following equivalence: A ∼ B if TA = B for some non-singular 3 × 3 matrix. The
single matrix

N1 = {



1 0
0 1
0 0




is an exact normal form serving for the singularity class of rank 2 matrices, and the
set

N2 =
{ 


1 a
0 0
0 0


 ,




0 1
0 0
0 0


 ,




0 0
0 0
0 0


 , a ∈ R

}

is an exact normal form serving for the singularity class of matrices of rank ≤ 1.
The modality of any rank 2 matrix is equal to 0 and the modality of ANY rank
≤ 1 matrix is equal to 1. The modality of any matrix with zero first column within
the singularity class of such matrices is equal to 0.
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6. Principle 2: non-generic case holds in families only

Principle 1 can be explained as follows: all objects are defined up to a small
perturbation, therefore results that do not respect a small perturbation are not
worth. It seems that following this ideology one should study a generic case only.
What for to study singular square matrices if the singularity class {A : detA = 0}
can be avoided by a small perturbation of A? What for to study function germs
f(x) such that f ′(x0) = f ′′(x0) for some x0 ∈ R if the singularity class consisting
of such functions can be avoided by a small perturbation of f(x)?

The answer is as follows: if a ∈ O is an object belonging to a singularity class
S of codimension d ≥ 1 then we can get rid of S by a small perturbation of a, but
we cannot get rid of S by a small perturbation of a generic d-parameter family of
objects which contains a.

Example 8. Let S be the class of functions f : R → R such that f(x0) =
f ′(x0) = 0 for some (non-fixed) x0 ∈ R. It has codimension 1 (cf. Example 2). If
f ∈ S then there is an arbitrary small perturbation f̃ of f such that f̃ 6∈ S. For
example, f(x) = x2 ∈ S and f̃(x) = x2 + δ does not belong to S for any δ 6= 0.
On the other hand there are one-parameter families fa, a ∈ R of functions such
that S is irremovable by their small perturbation. Take, for example, the family
fa(x) = x2 + a so that f0 ∈ S. Is it true that if f̃a(x) is a family sufficiently close
to fa(x) then there is a0 close to 0 such that f̃a0 ∈ S, i.e.

(2) f̃a0(x0) = f̃ ′a0
(x0) = 0

for some x0 close to 0? The answer is yes provided that “close” holds with respect
to sufficiently strong topology in the space of functions. A rough explanation of the
answer “yes”: (2) is a system of two equations for the same number of unknowns
x0 and a0.

Example 9. Let S be the class of singular 2× 2 matrices. For any A ∈ S there
is an arbitrary small perturbation Ã 6∈ S. For example,

A =
(

1 0
0 0

)
∈ S, =̃

(
1 0
0 δ

)
6∈ S for any δ 6= 0.

But if we consider a one-parameter family Aa =
(

1 0
0 a

)
then S cannot be avoided

by any smooth perturbation of the family: if Ãa is a family sufficiently close to the
family Aa, in a sufficiently strong topology, then there exists a0 close to 0 such that
the matrix Aa0 is singular.

Example 10. Let S be the class of functions f : R → R such that f(x0) =
f ′(x0) = f ′′(x0) = 0 for some (non-fixed) x0 ∈ R. It has codimension 2 (cf.
Example 1). Assume that fa(x) is a one-parameter family of functions such that
fa∗ ∈ S for some a∗. Is it possible to perturb the family fa → f̃a so that f̃a 6∈ S
for any values of the parameter a? The answer is yes. Take for example the family
fa(x) = x3 + ax so that f0 ∈ S. Consider the family f̃a(x) = x3 + ax + ε. If ε 6= 0
then f̃a 6∈ S for any a ∈ R.

On the other hand, the class S is irremovable in 2-parameter families. Consider
the 2-parameter family fa,b(x) = x3 +a+ bx. If one uses a strong enough topology,
the following can be proved: if f̃a,b(x) is a family sufficiently close to fa,b(x) then
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there exist (a0, b0) close to (0, 0) such that fa0,b0 ∈ S. A rough explanation: the
system

fa,b(x0) = f ′a,b(x0) = f ′′a,b(x0) = 0

consists of three equations for the same number of unknowns x0, a, b.

Example 11. The class S of 2× 4 matrices of rank 1 has codimension 3. It can
be avoided by a small perturbation of a family of matrices with ≤ 2 parameters
and it is irremovable (in the same sense as in examples above) in families with 3
parameters.

Principle 2. Along with studying individual objects of a singularity class S of
codimension d one should study families of objects such that S is irremovable by a
small perturbation of a family. Such families have ≥ d parameters.

7. Versal deformations

A deformation of an object a ∈ O is any family aε such that a0 = a and aε

depends smoothly on ε. Here ε ∈ Rm and the number of parameters m can be
arbitrary. We assume that ε is small meaning that ε varies in as small as we wish
neighborhood of 0 ∈ Rm. In view of Principle 2 it is worth to ask about a normal
form serving for any deformation of a fixed a ∈ O.

It seems that if we a normal form serving for O or for an open singularity class
containing a then we have an answer.

Example 12. Consider the vector space O of linear operators T : R2 → R3 and
consider the problem of classifying O with respect to linear transformations of both

the source and the target space. Consider the operator A with the matrix




1 0
0 0
0 0




(here and below we fix a basis of R2 and a basis of R3). Any linear operator in any
deformation of A is equivalent to an operator with one of the matrices

(30




1 0
0 1
0 0


 ,




1 0
0 0
0 0




and one can say that these two matrices is a normal form serving for all deformations
Aε of A. This is so, but this normal form has a big disadvantage: most deformations
Aε cannot be reduced to this normal form by linear transformations of the source
and the target vector spaces depending smoothly (or even continuously) on ε. How
to construct a

(*) normal form such that any linear operator of any deformation Aε can be reduced
to some linear operator of this normal form by transformations of the source and
target vector spaces depending smoothly on ε?

It is not hard to prove that one of examples of such normal form is the set of
deformations

(4)




1 0
0 f1(ε)
0 f2(ε)
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with arbitrary functions f1(ε), f2(ε) vanishing at ε = 0, and this normal form cannot
be simplified in the sense that any normal form satisfying (*) will contain two
arbitrary functions f1(ε), f2(ε) vanishing at ε = 0.

Note that die to (*) normal form (4) is much more informative than (3) . It
shows, for example, how the image of Aε depends on ε.

Replace in (4) the function f1(ε) by δ1 and f2(ε) by δ2 (certainly other letters
for small parameters can be used). We obtain




1 0
0 δ1

0 δ2


 .

This 2-parameter family is called a mini-versal deformation of the matrix A (in our
classification problem).

Definition. Assume that the equivalence of objects in O is induced by the
action of a group G. A versal deformation of a ∈ O is a smooth deformation
Aδ1,...,δs

of a such that for any smooth deformation aε of a, with any number of
parameters (ε ∈ Rm, any m), there exists a smooth deformation gε ∈ G of the
identity element of g (g0 = id) such that gε.aε = Af1(ε),...,fs(ε) for some smooth
functions f1(ε), ..., fs(ε). A versal deformation is called mini-versal if the number s
of its parameters is minimal possible.

Of course, the word “smooth” should be formalized, especially when dimO =
dimG = ∞ - the case of classification problems of local analysis. Certainly, O and
G are subjects to certain restrictions (which hold in most valuable classification
problems).

Example 13(exercise). In the problem of classification of 2× 2 matrices with

respect to similarity, one of the mini-versal deformations of the matrix
(

1 0
0 2

)
is

the deformation
(

1 + δ1 0
0 2 + δ2

)
.

It is more difficult to construct a mini-versal deformation of the matrix
(

1 1
0 1

)
.

In the lecture I said that one of the mini-versal deformations is

(5)
(

1 + δ1 1
0 1 + δ2

)
.

I made a mistake: it is wrong.

Example 14 (exercise). Consider the one-parameter deformation Aε =
(

1 1
ε 1

)

and prove that there are no smooth functions Tij(ε), f1(ε), f2(ε) such that

T (0) = I, f1(0) = f2(0) = 0, T−1(ε)AεT (ε) =
(

1 + f1(ε) 1
0 1 + f2(ε)

)
,

T (ε) =
(

T11(ε) T12(ε)
T21(ε) T22(ε)

)

Consequently (5) is NOT a versal deformation of the matrix
(

1 1
0 1

)
.



10

Example 15 (exercise). Prove that in the problem of classifying 2×2 matrices
with respect to similarity, each of the families(

1 1
δ1 1 + δ2

)
,

(
1 + δ1 1

δ2 1 + δ1

)

is a mini-versal deformation of the matrix
(

1 1
0 1

)
.

Theorem. In classification problems of linear algebra and in certain clas-
sification problems of local analysis (including local classification of maps from
Rn → Rm) the number of parameters of any mini-versal deformation of an object
a in a singularity class S is the codimension of S plus the modality of a within S.

Exercise. Check this theorem for all examples above and try to understand it
(rather than to prove).

Example 16 (exercise). Let S ⊂ Mat(2, 2) be the singularity class of diago-
nalizable matrices with one eigenvalue of multiplicity 2 (equivalence: similarity of
matrices).

a) find codimS

b) find the modality of any A ∈ S within S

c) use the given theorem to find the number of parameters of any mini-versal
deformation of A

d) find a mini-versal deformation of the matrix I

Answers: a) 3 b) 1 c) 3 + 1 = 4 d)
(

1 + δ1 δ2

δ3 1 + δ4

)
.

8. Illustrating example: the Gauss method for solving systems of
linear equations

Given a system of linear equations Ax = b where A ∈ Mat(m,n), b ∈ Rm, x ∈ Rn

associate to it the m× (n + 1) matrix (A, b) whose first n columns are the columns
of A and the last column is the vector b. The Gauss method is the solution of
the problem of classifying matrices (A, b) with respect to the following equivalence:
C = (A, b) is equivalent to C̃ = (Ã, b̃) if TC = C̃ for some non-singular m × m

matrix T . Two equivalent matrices C, C̃ correspond to linear systems with the
same general solution. The Gauss method is the reduction of C to a certain normal
form. If C belongs to this normal form then the corresponding linear system can
be solved immediately.

Consider the simplest case m = n = 2, i.e. solving linear systems of two equations
for two unknowns. In this case the Gauss method is the reduction to a certain
normal form of 2× 3 matrices C with respect to the given above equivalence. For
the generic singularity class consisting of matrices with non-zero first column this
normal form is as follows:
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(
1 0 a
0 1 b

)
, (unique solution)

(
1 a 0
0 0 1

)
, (no solutions)

(
1 a b
0 0 0

)
(infinitely many solutions).

It is easy to obtain mini-versal deformations:(
1 0 a
0 1 b

)
→

(
1 0 a + δ1

0 1 b + δ2

)
. Solution: x1 = a + δ1, x2 = b + δ2;

(
1 a 0
0 0 1

)
→

(
1 a + δ1 0
0 δ2 1

)
. Solution: x1 = −a+δ1

δ2
, x2 = 1

δ2
(for δ2 6= 0)

(
1 a b
0 0 0

)
→

(
1 a + δ1 b + δ2

0 δ3 δ4

)
. Solution x1 = b+ δ2− (a+δ1)δ4

δ3
, x2 = δ4

δ3

(for δ3 6= 0)

If the parameters vary in a certain open dense set U (i.e. in a generic case in the
space of parameters) the solution is unique and the mini-versal deformations show
the qualitative dependence of the solution on the parameters varying in U .

Exercise. Construct a normal form serving for the whole space of 2×3 matrices
(including matrices with zero first column) and corresponding mini-versal deforma-
tions. Use the mini-versal deformations to determine the qualitative difference
between the following two systems without solutions:

(
1 a
0 0

)
x =

(
0
1

)
and

(
0 0
0 1

)
x =

(
1
0

)


