
Lecture 3. Constructing a mini-versal deformation. Infinitesimal method

1. Introduction

In this lecture I will define an infinitesimal (mini-) versal deformation and I
will explain a simple way for constructing it. One of difficult and very powerful
theorems of singularity theory is as follows:

Versality theorem. In the problem of classification of C∞ or analytic map
germs Rn → Rm with respect to local diffeomorphisms (changes of coordinates)
either in the source space or in the target space, or in both, any infinitesimal (mini-
) versal deformation is a (mini-) versal deformation.

The versality theorem (infinitesimal versal deformation = versal deformation)
also holds for finite-dimensional problems of linear algebra.

I will consider a general case (sections 2,3,4), after that I will apply the con-
struction to the problem of classifying matrices (section 5), functions (section 6),
and parameterized curves (section 7) to get examples of mini-versal deformations
including those mentioned in Lectures 1-2.

2. The general case I will consider

I will explain the notion of infinitesimal versal deformation in terms of math of
19th century, avoiding Lie algebras and Lie groups. It is possible in the following
case (which holds for many, but not for all classification problems):

1. The space of objects is a vector space V of finite or infinite dimension. The
equivalence of two objects is induced by the action of a group G on V of finite
or infinite dimension (if dimG = ∞ it is more accurate to say that G is a pseudo-
group). Two objects a, b ∈ G are equivalent if they belong to one orbit of the action
of G, i.e. there exists g ∈ G such that g.a = b.

2. The group G belongs to a certain vector space W : G ⊂ W such that for any
fixed w ∈ W one has id + εw ∈ G for sufficiently small ε. Here id is the identity
element of G.

Remark. Usually G is a finite dimensional or infinite dimensional manifold, i.e. G is
a Lie group or Lie pseudo-group. In both cases the vector space W has a very important
structure of Lie algebra and one can define the exponential map W → G.

3. Linearization of the group action

Fix a ∈ V and w ∈ W . Consider the family (id + εw).a ∈ V defined for small ε.
Write it in the form

(1) (id + εw).a = a + εb + o(ε),

where b is a certain element (point, vector) in V . It depends on a ∈ V and on
w ∈ W :

b = La(w).

The map w → La(w) is linear. We obtain a linear operator

La : W → V, La(w) = b, b is defined by (1).
1



2

Definition. The linear operator La : W → V is the linearization of the action
of G at the point a. The image of this operator (which is a subspace of V ) is the
tangent space to the orbit of a at the point a.

4. Definition of an infinitesimal versal deformation

Consider the tangent space Image(La) ⊂ V . Let U be any subspace such that

(2) V = Image(Ta) + U

Assume that dimU < ∞. Let u1, ..., um be a basis of U .

Definition. The family a+δ1u1 + · · ·+δmum is an infinitesimal versal deforma-
tion of a. It is an infinitesimal mini-versal deformation if the sum in (2) is direct,
i.e. U is a complementary vector space to Image(Ta) in V .

5. Example: versal deformation of matrices

Consider the problem of classifying n× n matrices with respect to similarity: A
is equivalent to B if T−1AT = B for some non-singular matrix T . In this case V
is the vector space of all n × n matrices, G is the group of all non-singular n × n
matrices, and W = V . Requirement 2 (section 2) holds since for any fixed n × n
matrix A and sufficiently small ε the matrix I + εA is non-singular.

To compute the linearization of the action of G note that for any fixed n × n
matrix B and small ε one has

(I + εB)−1A(I + εB) = (I − εB + o(ε))(A + εAB) =

= A + ε(AB −BA) + o(ε).

Therefore the linearization of the action of G at the point A ∈ Mat(n, n) is the
linear operator

LA : Mat(n, n) → Mat(n, n), LA(B) = AB −BA

and the tangent space to the orbit of A at the point A is the subspace

(3)
{
AB −BA, B ∈ Mat(n, n)

} ⊂ Mat(n, n).

Example. Let us find an infinitesimal mini-versal (and consequently mini-
versal) deformation of the matrix

A =




1 1 0
0 1 0
0 0 1


 .

It is easy to compute that the vector space (3) consists of matrices of the form

Image(LA) =




a b c
0 −a 0
0 d 0


 , a, b, c, d ∈ R.

Fix a complementary vector space, for example

U =




0 0 0
r1 r2 r3

r4 0 r5


 , r1, ..., r5 ∈ R.
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We obtain an example of an infinitesimal mini-versal (and consequently mini-versal)
deformation of A: 


1 1 0
δ1 1 + δ2 δ3

δ4 0 1 + δ5




with 5 parameters δ1, ..., δ5.

Exercise. Find an example of mini-versal deformation of the matrices


1 1 0
0 1 0
0 0 2


 and




1 1 0
0 1 1
0 0 1




and explain the number of parameters in the mini-versal deformation (see Lect. 1).

6. Classification of function germs

Consider the infinite dimensional vector space

V = function germs f : Rn → R at 0 ∈ Rn.

Consider the problem of classifying V with respect to local C∞ diffeomorphisms of
Rn (changes of coordinates in the source space). In this case G = Diff(n) is the
infinite dimensional group of local C∞ diffeomorphisms Ψ : (Rn, 0) → (Rn, 0). In
local coordinates any Ψ ∈ Diff(n) is a vector-function germ

(4) Ψ =




Ψ1

· · ·
Ψn




and Ψ ∈ Diff(n) is and only if the Jacobian does not vanish at 0 (and consequently
near 0):

det




∂Ψ1
∂x1

· · · ∂Ψ1
∂xn· · ·

∂Ψn

∂x1
· · · ∂Ψn

∂xn


 (0) 6= 0.

Consider the following vector space W covering the group Diff(n):

W = V n = all vector function germs (4).

The requirement 2 (section 2) holds because for any fixed function germs ψ1(x), ..., ψn(x)
the map xi → xi + εψi(x) is a local diffeomorphism for sufficiently small ε:

det

(
I + ε




∂ψ1
∂x1

· · · ∂ψ1
∂xn· · ·

∂ψn

∂x1
· · · ∂ψn

∂xn


 (0)

)
6= 0.

Remark. Why we do not restrict W to vector function germs vanishing at 0 ∈
Rn? Because working with families we work in extended space Rn+1 = Rn(x)×R(ε)
and a map xi → xi + εψi(x) from Rn to Rn should be understood as a map

xi → xi + εψi(x), ε → ε from Rn+1 to Rn+1.

This map is a local diffeomorphism at 0 = {x = 0, ε = 0} ∈ Rn+1 preserving
0 ∈ Rn+1 for ANY ψ1(x), ..., ψn(x).

To linearize the action of Diff(n) note that

f(x1 + εψ1(x), · · · , xn + εψn(x)) = f(x) + ε
( ∂f

∂x1
ψ1 + · · ·+ ∂f

∂xn
ψn

)
+ o(ε).
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Therefore the linearization of the action of Diff(n) at the function germ f =
f(x) ∈ V is the linear operator

Lf : V n → V, Lf (ψ1, ..., ψn) =
∂f

∂x1
ψ1 + · · ·+ ∂f

∂xn
ψn.

The tangent space to the orbit of f at f ∈ V is the vector space

(5)
{ ∂f

∂x1
ψ1 + · · ·+ ∂f

∂xn
ψn, ψi ∈ V

}
.

Example. Let n = 1, f(x) = xn. The vector space (5) consists of function germs
of the form nxn−1φ(x) where φ(x) is an arbitrary function germ. A complementary
vector space can be chosen to be span(1, x, ..., xn−2). We obtain an infinitesimal
mini-versal (and consequently mini-versal)) deformation of xn:

xn + δ0 + δ1x + · · ·+ δn−2x
n−2

which is the classical result mentioned in Lecture 2.

Example. Let n = 2, f(x1, x2) = x3
1 +x3

2. The vector space (5) consists of func-
tion germs of the form 3x2

1φ1(x)+3x2
2φ2(x) where φ1(x), φ2(x) are arbitrary function

germs. A complementary vector space can be chosen to be span(1, x1, x2, x1x2).
We obtain an infinitesimal mini-versal (and consequently mini-versal)) deformation
of x3

1 + x3
2:

x3
1 + x3

2 + δ1 + δ2x1 + δ3x2 + δ4x1x2.

Exercise. Find mini-versal deformations of the function germs

xn
1 + xm

2 , x2
1x2 + x6

2

(you can work on the level of formal power series, the same results hold in C∞ and
analytic categories).

7. Classification of parameterized curves (one branch)

Consider the vector space of germs of parameterized curves γ : R → Rn at a
fixed point t = 0 ∈ R. In the notations of the previous section it is the vector space
V n. Consider the equivalence induced by the changes of coordinates in both the
source space R (reparameterization) and the target space Rn (see lecture 2). In this
case G = Diff(1)×Diff(n) where Diff(1) is the group of local diffeomorphisms
of R and Diff(n) is the group of local diffeomorphisms of Rn. The requirement
2 (section 2) holds for W = V × V n. (Explanation: the same as in the previous
section. Constructing W we do not take away function germs that do not vanish
at 0 - see the remark in the previous section).

To linearize the action of Diff(1)×Diff(n) write

γ(t) =




γ1(t)
...

γn(t)




and note that a reparameterization t → t + εφ(t) brings γ(t) to a curve of the form

(6) γ(t) + ε




γ′1(t)φ(t)
· · ·

γ′n(t)φ(t)


 + o(ε)
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and a change of coordinates of the form xi → xi + εψi(x) brings (6) to a curve of
the form

γ(t) + ε




ψ1(γ1(t), ..., γn(t)) + γ′1(t)φ(t)
· · ·

ψn(γ1(t), ..., γn(t)) + γ′n(t)φ(t)


 + o(ε).

Therefore the linearization of the action of Diff(1)×Diff(n) at the point γ(t) is
the linear operator

Lγ : V × V n → V n, Lγ(φ, ψ1, ..., ψn) =




ψ1(γ1(t), ..., γn(t)) + γ′1(t)φ(t)
· · · ,

ψn(γ1(t), ..., γn(t)) + γ′n(t)φ(t)


 .

Example. Let n = 2 and consider the cusp singularity γ(t) = (t2, t3). Then Lγ

maps a triple φ(t), ψ1(x1, x2), ψ2(x1, x2) to the vector function germ(
ψ1(t2, t3) + 2tφ(t)
ψ2(t2, t3) + 3t2φ(t)

)
(7)

and the tangent space to the orbit of γ = γ(t) at the point γ consists of vector
function germs of this form, with arbitrary φ(t), ψ1(x1, x2), ψ2(x1, x2). Since any
non-negative integer m except m = 1 can be expressed in the form m = 2d1 + 3d2

with non-negative integers d1, d2, by a choice of ψ1(x1, x2) and ψ2(x1, x2) we can
get, in the first and in the second component, any function whose f(t) such that
f ′(0) = 0 (it is clear on the level of formal power series; the same holds in C∞ and
analytic categories). Using it, it is easy to see that a complementary space to the
vector space of functions of form (7) is one-dimensional and can be chosen to be

span

(
0
t

)
. We obtain an infinitesimal mini-versal (and consequently mini-versal)

deformation of the cusp (t2, t3):

(t2, t3 + εt)

used in Lecture 2.

Example. Consider the curve germ (t3, t4). To construct its mini-versal defor-
mation we have to find a complementary space to the vector space consisting of
vector function germs of the form(

ψ1(t3, t4) + 3t2φ(t)
ψ2(t3, t4) + 4t3φ(t)

)

where φ(t), ψ1(x1, x2), ψ2(x1, x2) are arbitrary function germs. Using the fact that
any non-negative integer m except m = 1, 2, 5 can be expressed in the form m =
3d+4d2 with non-negative integers d1, d2, it is easy to prove that on the level of
formal power series a complementary vector space can be chosen to be

{ (
r1t

r2t + r3t
2

)
, r1, r2, r3 ∈ R

}
.

Therefore one of the mini-versal deformations is as follows:

(t3 + δ1t, t4 + δ2t + δ3t
2).

Exercise. Find mini-versal deformations of the curve germs (t3, t5), (t4, t5), (t3, t7).

Exercise. Understand constructing of mini-versal deformation of multi-germs
of curves (see Lecture 2) and construct a mini-versal deformation of the multi-germ
(t21, t

3
1) ∪ (t2, t2).


