
Lecture 6. Systems of linear ODEs with constant coefficients

(1) X ′ = AX, A constant matrix n× n

In (1) A is a constant n× n matrix and X = X(t) =




x1(t)
x2(t)
...

xn(t)


.

1. Existence of solutions defined for all t. For any X0 ∈ Rn there is a
unique solution satisfying the initial condition X(0) = X0 ∈ Rn. This solution can
be expressed by the formulae

X(t) = eAt ·X0,

where

(2) eAt = I + At +
A2t2

2!
+

A3t3

3!
+ · · · .

Here I is the identity matrix. Whatever is the matrix A, the series converges to a
matrix whose entries are C∞ functions.

2. Shift of time. Since (1) is autonomous system (i.e. the right hand side part
does not depend directly on t), given any solution X(t), the vector function X(t+s)
is also a solution, for any s ∈ R. It follows that the solution of (1) satisfying the
initial condition X(t0) = X0 ∈ Rn can be expressed by the formulae

(3) X(t) = eA(t−t0) ·X0.

Here eA(t−t0) is the series (2) with t replaced by t− t0.

3. Using (2) or (3). In applications these formulae can be used only in a small
neighborhood of t = 0 (series (2)) or t = t0 (series (3)).

Example. Consider the system

x′1 = 2x1 − 4x2, x′2 = x1 + 5x2

and the initial condition
x1(10) = 1, x2(10) = 0.

The solution has the form

(
x1(t)
x2(t)

)
=

(
I+

(
2 −4
1 5

)
(t−10)+

(
2 −4
1 5

)2

2
(t−10)2

)
·
(

1
0

)
+o(t−10)2 as t → 10

and we obtain

x1(t) = 1 + 2 · (t− 10) + o(t− 10)2 as t → 10

x2(t) = (t− 10) + 3.5(t− 10)2 + o(t− 10)2 as t → 10

4. The case of complex A. The complex-valued solutions. A complex-
valued solution of (1) is a function R→ Cn satisfying this equation. The complex-
valued solutions are defined if A is either real or complex matrix. For any matrix
A (either real or complex) the complex-valued solution of (1) satisfying the initial
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condition X(t0) = X0 ∈ Cn can be expressed by the same formulae (3), where the
exponent is defined by the same formula (2).

Example. Consider the system

(4) x′1 = −x2, x′2 = x1

It is easy to check that the solution satisfying the initial condition

x1(0) = 0, x2(0) = 0

is
x1(t) = cos(t), x2(t) = sin(t).

On the other hand, introducing z = x1 + ix2 we can write (4) as one equation for
complex-valued function z(t):

z′ = x′1 + ix′2 = −x2 + ix1 = i · (x1 + ix2) = ib · z.

The initial condition is z(0) = 1 + 0i = 1. The solution is z(t) = eit · 1 = eit. Now
the uniqueness theorem implies the famous

Euler formulae:
eit = cos(t) + i · sin(t)

5. Theorem. If A is a real n×n matrix then the set of all real-valued solutions
of (1) (defined for all t) is a subspace of the vector space of C∞ real-valued vector-
functions, and this subspace has dimension n over the field R. The set of complex-
valued solutions of (1) is a subspace of the vector space of C∞ complex-valued
vector-functions, and this subspace has dimension n over the field C. If X(t) is a
non-real solution of (1) then the complex-conjugate vector function X̄(t) is also a
solution of (1).

6. The method for finding the basis of the space of all solutions. The
method is as follows. We introduce a new vector-function Y = Y (t) related to
X = X(t) via a (transition) invertible n× n constant matrix T :

X = TY.

Then, substituting to (1) we obtain

X ′ = TY ′ = AX = ATY

and we obtain the following equation for Y :

Y ′ =
(
T−1AT

)
Y

We can take any invertible T and of course one should take T so that the matrix
T−1AT has the simplest possible form.

7. The case that A is diagonalizable over R. This case holds if the eigen-
values of A are all real and each of them has the same algebraic and geometric
multiplicity. Within this case the most important one is the case when A has n real
distinct eigenvalues λ1, ..., λn (then the algebraic and the geometric multiplicity of
each of the eigenvalues is 1). Consider this case. Denote

Ti = eigenvector corresponding to λi

and consider the matrix

T = matrix with columns T1, ..., Tn.
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This matrix is invertible and

T−1AT = diag(λ1, ..., λn),

where diag(λ1, ..., λn) denotes the diagonal matrix with λ1, ..., λn on the diagonal.
Introducing Y such that X = TY (section 6) we obtain

Y ′ = diag(λ1, ..., λn) · Y
For this system an example of the basis of all real-valued solutions can be easily
calculated:

Y (1)(t) = eλ1t ·




1
0
...
0
0




, · · · , Y (n)(t) = eλnt ·




0
0
...
0
1




Now we should transfer this basis from Y to X. Since X = TY we simply multiply
the vector functions above by T . We obtain an example of the basis

X(1)(t) = eλ1tT1, · · · , X(n)(t) = eλntTn.

Example. Let us find the solution of the system

x′1 = x1 + x2, x′2 = −2x1 + 4x2

satisfying the initial condition

x1(0) = 1, x2(0) = −1.

We calculate the eigenvalues of the matrix
(

1 1
−2 4

)
. They are λ1 = 2, λ2 = 3,

therefore the matrix is diagonalizable over R. Calculate the corresponding eigen-

vectors T1 =
(

1
1

)
, T2 =

(
1
2

)
. Now we know an example of the basis of the space

of all real-valued solutions:

X(1)(t) = e2t

(
1
1

)
, X(2)(t) = e3t

(
1
2

)
.

Any solution has the form

X(t) = C1e
2t

(
1
1

)
+ C2e

3t

(
1
2

)
,

where C1, C2 ∈ R. The coefficients C1, C2 depend on the initial condition. The

initial condition in our example is X(0) =
(

1
−1

)
. Substituting t = 0 we obtain

C1

(
1
1

)
+ C2

(
1
2

)
=

(
1
−1

)

and solving this system we obtain C1 = 3, C2 = −2.
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8. The case that the real n × n matrix A is not diagonalizable over R
but diagonalizable over C

Again, within this case I will consider the most important subcase that A has n
distinct eigenvalues, but some of them are not real. Since A is real, the set of all
eigenvalues is as follows:

λ1, ..., λr, a1 ± b1i, a2 ± b2i, ..., as ± bsi,

where b1, ..., bs 6= 0 and r + 2s = n. We use the same method (section 6) and we
find an example of a basis of the space of all solutions in the same way as in section
7, but now we work over the field C, i.e. we find an example of a basis of the space
of complex-valued solutions. It is

(6) eλ1tT1, . . . , eλrtTr,

(7) e(a1+b1i)tU1, e(a1−b1i)tŪ1, · · · , e(as+bsi)tUs, e(as−bsi)tŪs,

where T1, ..., Tr are real eigenvectors corresponding to the real eigenvalues λ1, ..., λr

and U1, ..., Us are complex eigenvectors (in Cn) corresponding to the eigenvalues
a1 + b1i, ..., as + bsi (Then the complexly-conjugate vectors Ū1, ..., Ūs are the eigen-
vectors corresponding to the eigenvalues a1 − b1i, ..., as − bsi).

Now we have to transfer this basis for the space of complex-valued solutions to
a basis for the space of real-valued solutions. Replacing in (7) each of the couples

e(ak+bki)tU1, e(ak−bki)tŪ1, k = 1, ..., s

by the couple
(
e(a1+b1i)tU1 + e(a1−b1i)tŪ1

)/
2,

(
e(a1+b1i)tU1 − e(a1−b1i)tŪ1

)/
(2i),

we obtain another example of a basis for the space of complex-valued solutions:

(8) eλ1tT1, . . . , eλrtTr,

(9)
Re

(
e(a1+b1i)tU1

)
, Im

(
e(a1+b1i)tU1

)
, · · · , Re

(
e(as+bsi)tUs

)
, Im

(
e(as+bsi)tUs

)
,

where Re and Im denote the real and the imaginary parts. Since each of the vector
functions in (8)-(9) is real-valued then (8)-(9) is a basis simultaneously for complex-
valued and real-valued solutions. (This means that vector-functions in (8)-(9) are
linearly independent over C and consequently linearly independent over R, and
that any real-valued solution is a linear combination of these vector-functions with
real coefficients, and any complex-valued solution is a linear combination of these
vector-functions with complex coefficients).

Example Let us find the general solution of the system

x′1 = x1 − 10x2, x′2 = x1 + 3x2.

The eigenvalues of the matrix
(

1 −10
1 3

)
are λ1,2 = 2 ± 3i, therefore this matrix

is diagonalizable over C, but not over R. Find the eigenvector corresponding to

λ1 = 2 + 3i, one of example is
( −10

1 + 3i

)
. Therefore an example of a basis for the

space of all complex-valued solutions is

(10) e(2+3i)t

( −10
1 + 3i

)
, e(2−3i)t

( −10
1− 3i

)
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and for real-valued solutions:

(11) Re
(
e(2+3i)t

( −10
1 + 3i

) )
, Im

(
e(2+3i)t

( −10
1 + 3i

) )
.

Using the Euler formulae (section 4) we can write down the basis (11) without
complex numbers:

Re
(
e(2+3i)t

( −10
1 + 3i

) )
= e2t ·Re

(
cos(3t) + i · sin(3t)) ·

( −10
1 + 3i

) )
=

(12) = e2t ·
( −10cos(3t)

cos(3t)− 3sin(3t)

)

Im
(
e(2+3i)t

( −10
1 + 3i

) )
= e2t · Im

(
cos(3t) + i · sin(3t)) ·

( −10
1 + 3i

) )
=

(13) = e2t ·
( −10sin(3t)

3cos(3t) + 3sin(3t)

)

The general real-valued solution (i.e. the set of all real-valued solutions) is the
linear combination of the vector functions in (12)-(13) with real coefficients C1, C2.
To find the solution corresponding to the given initial condition we substitute t = t0
and obtain a system of linear equations for C1, C2.

Another way to find a solution corresponding to given initial conditions is to
work over C and use basis (10). We know that any complex-valued solution (and
in particular any real-valued solution!) is a linear combination of complex-valued
functions (10) with complex coefficients C1, C2. Substituting t = t0 we obtain
a linear system for C1, C2. The matrix of this system has complexly-conjugate
columns and the right hand side is a vector in R2 (if of course the initial conditions
are real, as in applications). Therefore solving this system for C1, C2 we obtain
C2 = C̄1. The solution takes the form

C1e
(2+3i)t

( −10
1 + 3i

)
+ C̄1e

(2−3i)t

( −10
1− 3i

)
= 2 ·Re

(
C1e

(2+3i)t

( −10
1 + 3i

) )
,

where C1 is a certain complex number.

9. The case that the n× n matrix A is not diagonalizable over C. This
requires the whole theory of Jordan normal forms. In this Lecture Notes I will
explain the construction of a basis in the simplest case when:

the n × n matrix A has (n − 1) distinct eigenvalues λ1, ..., λn−1, each of the
eigenvalues λ2, ..., λn−1 has algebraic multiplicity 1 (and consequently geometric
multiplicity 1) and the eigenvalue λ1 has algebraic multiplicity 2 and geometric
multiplicity 1.

Denote by T1, ..., Tn−1 eigenvectors corresponding to λ1, ..., λn−1.

Lemma. In the case under consideration there exists a vector T̂1, called associate
vector to T1, such that

(14) (A− λ1I)T̂1 = λ1T1.
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Construct n× n matrix

T = n× n matrix with columns T1, T̂1, T2, ..., Tn−1.

Lemma. The vectors T1, T̂1, T2, ..., Tn−1 are linearly independent and conse-
quently the matrix T is invertible.

The equations ATi = λiTi, i = 1, ..., n− 1 and the equation (14) imply

AT = TJ, J =




λ1 1 0 0 0 ... 0 0
0 λ1 0 0 0 ... ... 0
0 0 λ2 0 0 ... 0 0
0 0 0 λ3 0 ... 0 0
... ... ... ... ... ... ... ...
0 0 0 0 0 ... 0 λn−1




and consequently
T−1AT = J

The matrix J is one of Jordan normal forms. Now we use the method in section 6:
we introduce Y such that X = TY , for Y we obtain the system

Y ′ = JY,

this system can be easily solved using the method of variation of constant (see
example below), after that we transfer Y to X.

Example. Let us find the solution of the system

x′1 = 2x1 + 3x2, x′2 = −3x1 + 8x2

satisfying the initial condition

x1(0) = 1, x2(0) = 3.

The matrix A =
(

2 3
−3 8

)
has only one eigenvalue λ1 = 5 with algebraic multi-

plicity 2 and geometric multiplicity 1. Calculate one of eigenvectors T1 =
(

1
1

)
. By

the given above lemma there exists an associate vector T̂ satisfying the equation

(A− 5I) · T̂1 = T1 =
(

1
1

)

This associate vector can be easily found: for example T̂1 =
(

0
1/3

)
(the solution

for T̂1 is not unique). Now we construct the matrix

T = (T1, T̂1) =
(

1 0
1 1

3

)

and introduce Y such that X = TY . For Y we obtain the system

Y ′ =
(

5 1
0 5

)
Y

with the initial condition

Y (0) =
(

1 0
1 1/3

)−1

·X(0) =
(

1 0
−3 3

)
·
(

1
3

)
=

(
1
6

)
.
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Let Y = (y1(t), y2(t)). Then

y′1 = 5y1 + y2, y′2 = 5y2, y1(0) = 1, y2(0) = 6.

The equation y′2 = 5y2 and the initial condition y2(0) = 6 implies

y2(t) = 6e5t

and then y′1 = 5y1 + 6e5t, y1(0) = 1. This is a linear equation which can be solved
by the method of variation of constant:

y1(t) = C(t)e5t, C ′(t)e5t = 6e5t, C ′(t) = 6, C(t) = 6t + D,

so
y1(t) = (6t + D)e5t

and the initial condition y1(0) = 1 gives D = 1. We obtain

y1(t) = (6t + 1)e5t, y2(t) = 6e5t.

Now we return to X(t):

X(t) =
(

1 0
1 1

3

)
· Y (t) =

(
1 0
1 1

3

)
·
(

(6t + 1)e5t

6e5t

)
=

= e5t ·
(

6t + 1
6t + 3

)
.

Answer:
x1(t) = e5t · (6t + 1), x2(t) = e5t · (6t + 3).

9. Invariant subspaces. A subspace L ⊂ Cn (in particular L ⊂ Rn) is called
invariant with respect to the system X ′ = AX if the following holds:

if X(t) is a solution such that X(0) ∈ L then X(t) ∈ L for any t ∈ R.

Consider the case that the n×n real matrix A has n distinct complex eigenvalues
(and consequently diagonalizable over C). Divide the eigenvalues onto the following
three groups:

• the eigenvalues λ1, ..., λr whose real part is negative (i.e. Re(λi) < 0). This group
contains real negative eigenvalues and the couples a± bi where a < 0, b > 0.

• the eigenvalues µ1, ..., µs whose real part is positive (i.e. such that Re(µi) > 0.
This group contains real positive eigenvalues and the couples a± bi
where a > 0, b > 0.

• the eigenvalues θ1, ..., θk whose real part is equal to 0. This group contains the
zero eigenvalue and the couples ±bi where b > 0.

Here r + s + k = n.

Denote now by

Tλ1 , Tλ2 , ..., Tλr eigenvectors corresponding to λ1, ..., λr,

Tµ1 , Tµ2 , ..., Tµs eigenvector corresponding to µ1, µ2, ..., µs,

Tθ1 , Tθ2 , ..., Tθk
eigenvectors corresponding to θ1, θ2, ..., θk.
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Theorem. Let A be an n× n matrix with n distinct complex eigenvalues.

1. Each of the subspaces

Lstable = span
{
Tλ1 , Tλ2 , ..., Tλr

}

Lunstable = span
{
Tµ1 , Tµ2 , ..., Tµs

}

Lcenter = span
{
Tθ1 , Tθ2 , ..., Tθk

}

is invariant with respect to the system X ′ = AX.

2. One has Cn = Lstable ⊕ Lunstable ⊕ Lcenter.

3. A solution X(t) of the system X ′ = AX tends to 0 ∈ Cn as t → +∞
if and only if X(0) ∈ Lstable.

4. A solution X(t) of the system X ′ = AX tends to 0 ∈ Cn as t → −∞
if and only if X(0) ∈ Lunstable.

4. If dimLcenter ≤ 3 then a solution X(t) of the system X ′ = AX is periodic
if and only if X(0) ∈ Lcenter.

Remarks.

1. The subspaces Lstable, Lunstable, Lcenter are called invariant stable, unstable,
center subspaces respectively.

2. In the last statement of the theorem a constant function is assumed to be peri-
odic. The condition dimLcenter ≤ 3 means, in the case of n distinct complex eigen-
values, that there are no TWO couples of eigenvalues ±ω1i,±ω2i. This condition
holds if there is a zero eigenvalue and/or one couple of non-real complexly-conjugate
eigenvalues on the imaginary axes. If dimLcenter ≥ 4 then the last statement of
the theorem holds with “periodic” replaced by “almost periodic” (an example of
an almost periodic function is f(t) = sin(t) + sin(

√
2t)).

3. If there are no eigenvalues to the left of the imaginary axes then Lstable = {0}.
If there are no eigenvalues to the right of the imaginary axes then Lunstable = {0}.
And if there are no eigenvalues on the imaginary axes (i.e. with zero real part)
then Lcenter = {0}.

4. Invariant stable, unstable, and center subspaces can also be defined (with the
same properties) if A is not diagonalizable over C, but in this case the definition is
more involved.

Example. Let A be a real 7× 7 matrix with eigenvalue −3 and corresponding
eigenvector T1 ∈ R7, eigenvalue −1 + 6i and corresponding eigenvector T2 ∈ C7,
eigenvalue 9i and corresponding eigenvector T3 ∈ C7, and eigenvalue 2 + 3i. Let
X(t) be the solution of the system X ′ = AX satisfying the initial condition X(0) =
v ∈ R7. Under which condition on v the solution X(t) tends to 0 ∈ R7 as t → +∞?
Under which condition on v the solution X(t) is periodic?

Solution. Since A is a real matrix, the stable invariant subspace of Cn is
spanned by the vectors T1, T2, T̄2 and the center invariant subspace is spanned by
the vectors T3, T̄3. Therefore:

X(t) → 0 ∈ R7 ⇐⇒ v ∈ span
{

T1, T2, T̄2

}
= span

{
T1, Re(T2), Im(T2)

}
,

X(t) is periodic ⇐⇒ v ∈ span
{

T3, T̄3

}
= span

{
Re(T3), Im(T3)

}
.


