Lecture 6. Systems of linear ODEs with constant coefficients

(1) X' = AX, A constant matrix n x n

In (1) A is a constant n x n matrix and X = X (t) =

1. Existence of solutions defined for all ¢. For any Xy € R™ there is a
unique solution satisfying the initial condition X (0) = X € R™. This solution can
be expressed by the formulae

X(t) = e X,
where
A2t A3¢3
(2) et =T+ At + CTRRT

Here I is the identity matrix. Whatever is the matrix A, the series converges to a
matrix whose entries are C'*° functions.

2. Shift of time. Since (1) is autonomous system (i.e. the right hand side part
does not depend directly on t), given any solution X (¢), the vector function X (t+s)
is also a solution, for any s € R. It follows that the solution of (1) satisfying the
initial condition X (tg) = Xo € R™ can be expressed by the formulae
(3) X(t) = Al . X,

A(t—to)

Here e is the series (2) with ¢ replaced by ¢ — t.

3. Using (2) or (3). In applications these formulae can be used only in a small
neighborhood of ¢ = 0 (series (2)) or ¢ = o (series (3)).
Example. Consider the system
Ty =2z —4x9, TH =21+ Do

and the initial condition
.131(10) = 1, 332(10) =0.
The solution has the form

(28) = (” G _54> (t10)“‘(?254)@10)2)((1))4—0(1&10)2 as t — 10

and we obtain
z1(t) =1+2-(t—10) + o(t — 10)* as t — 10
xo(t) = (t — 10) + 3.5(t — 10)® + o(t — 10)® as t — 10

4. The case of complex A. The complex-valued solutions. A complex-
valued solution of (1) is a function R — C™ satisfying this equation. The complex-
valued solutions are defined if A is either real or complex matrix. For any matrix
A (either real or complex) the complex-valued solution of (1) satisfying the initial
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condition X (t9) = Xo € C™ can be expressed by the same formulae (3), where the
exponent is defined by the same formula (2).

Example. Consider the system
(4) Ty = -1, THh=m
It is easy to check that the solution satisfying the initial condition
x21(0) =0, 22(0)=0
is
x1(t) = cos(t), xa(t) = sin(t).

On the other hand, introducing z = 1 + ixzs we can write (4) as one equation for
complex-valued function z(¢):

2 =a) +ixh = —xo +imy =i (x1 +ixe) = ib- 2.
The initial condition is z(0) = 1 + 0i = 1. The solution is z(t) = e - 1 = e'’. Now
the uniqueness theorem implies the famous

Euler formulae: _
e’ = cos(t) + i - sin(t)

5. Theorem. If A is a real n x n matrix then the set of all real-valued solutions
of (1) (defined for all ) is a subspace of the vector space of C'* real-valued vector-
functions, and this subspace has dimension n over the field R. The set of complex-
valued solutions of (1) is a subspace of the vector space of C*° complex-valued
vector-functions, and this subspace has dimension n over the field C. If X(¢) is a
non-real solution of (1) then the complex-conjugate vector function X () is also a
solution of (1).

6. The method for finding the basis of the space of all solutions. The
method is as follows. We introduce a new vector-function Y = Y'(¢) related to
X = X(t) via a (transition) invertible n X n constant matrix 7T":

X=TY.
Then, substituting to (1) we obtain
X'=TY' = AX = ATY
and we obtain the following equation for Y:
Y' = (T'AT)Y
We can take any invertible 7" and of course one should take T' so that the matrix

T—LYAT has the simplest possible form.

7. The case that A is diagonalizable over R. This case holds if the eigen-
values of A are all real and each of them has the same algebraic and geometric
multiplicity. Within this case the most important one is the case when A has n real
distinct eigenvalues Aq, ..., A, (then the algebraic and the geometric multiplicity of
each of the eigenvalues is 1). Consider this case. Denote

T; = eigenvector corresponding to \;
and consider the matrix

T = matrix with columns 77, ..., T,,.



This matrix is invertible and
T YAT = diag(\1, ..., \n),

where diag(A1, ..., \n,) denotes the diagonal matrix with A1, ..., A, on the diagonal.
Introducing Y such that X = T'Y (section 6) we obtain

Y’ =diag(Mi,...; M) - Y

For this system an example of the basis of all real-valued solutions can be easily
calculated:

1 0
0 0
YW@y =eMto | ], o, YW@y =Mt ] L
0 0
0 1

Now we should transfer this basis from Y to X. Since X = TY we simply multiply
the vector functions above by T. We obtain an example of the basis

XDy =My, oo XM() = et

Example. Let us find the solution of the system
Ty =11+ 22, TH =221 + 422
satisfying the initial condition
x1(0) =1, 22(0) = —1.
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therefore the matrix is diagonalizable over R. Calculate the corresponding eigen-

We calculate the eigenvalues of the matrix . They are \;y = 2,y = 3,

vectors T = (1 , Ty = (;) Now we know an example of the basis of the space

of all real-valued solutions:

X (¢) = e G) . X () = (;) .

Any solution has the form

X(t) = 0162t (1) + Ogegt (é) 3

where C1,Cy € R. The coefficients Cy,Cy depend on the initial condition. The
initial condition in our example is X (0) = (11>. Substituting ¢t = 0 we obtain

(1) e (3)- (1)

and solving this system we obtain C = 3,y = —2.



8. The case that the real n x n matrix A is not diagonalizable over R
but diagonalizable over C

Again, within this case I will consider the most important subcase that A has n
distinct eigenvalues, but some of them are not real. Since A is real, the set of all
eigenvalues is as follows:

)\1,...,)\T, a1:|:b1i, a2:|:b2i7 ceey as:I:bSi,

where by, ...,bs # 0 and r + 2s = n. We use the same method (section 6) and we
find an example of a basis of the space of all solutions in the same way as in section
7, but now we work over the field C, i.e. we find an example of a basis of the space
of complex-valued solutions. It is

(6) My L e
(7) 6(a1+b1i)tU1, e(al—bli)tlj17 e e(aSJ'—bsi)tUs, e(as—bsi)ths7

where T7, ..., T;. are real eigenvectors corresponding to the real eigenvalues A1, ..., A,
and Uy, ...,Us are complex eigenvectors (in C™) corresponding to the eigenvalues
aj +byi, ..., a5 + bgi (Then the complexly-conjugate vectors Uy, ..., U, are the eigen-
vectors corresponding to the eigenvalues a; — b4, ..., as — bsi).

Now we have to transfer this basis for the space of complex-valued solutions to
a basis for the space of real-valued solutions. Replacing in (7) each of the couples

elantbedltyr olax=bkitiy = p =1 s
by the couple
(6(a1+b1i)tUl + e(alfbli)tUl)/Q’ (e(a1+b1i)tU1 — 6(@1*1)11‘)"401)/(2%‘),

we obtain another example of a basis for the space of complex-valued solutions:

(8) My L e,
(9)
Re(e(alerli)tUl), I,,n(e(al+bli)1§[j1)7 e Re(6(0,544752')150'8)7 Im(e(as+bsi)tUs>,

where Re and I'm denote the real and the imaginary parts. Since each of the vector
functions in (8)-(9) is real-valued then (8)-(9) is a basis simultaneously for complex-
valued and real-valued solutions. (This means that vector-functions in (8)-(9) are
linearly independent over C and consequently linearly independent over R, and
that any real-valued solution is a linear combination of these vector-functions with
real coefficients, and any complex-valued solution is a linear combination of these
vector-functions with complex coefficients).

Example Let us find the general solution of the system
) =1 — 1022, x5 =21 + 322.
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is diagonalizable over C, but not over R. Find the eigenvector corresponding to

The eigenvalues of the matrix are A1 = 2 £ 3i, therefore this matrix

A1 = 2 + 3i, one of example is <1_+1g2> Therefore an example of a basis for the

space of all complex-valued solutions is

o (=10 o [ —10
(2431)t (2—-30)t
(10) ¢ (1 + 3z'> € (1 - 3i>



and for real-valued solutions:

(11) Fe (B(Mi)t <1+1(?)>z) ) d m(e(2+3i)t <1+1(3)n> )

Using the Euler formulae (section 4) we can write down the basis (11) without
complex numbers:

Re(e(2+00t (1;13@) ) = e - Re(cos(3t) + i - sin(31) <1jgl> )=
(12) =e* (cos(_Bi)O iO?’;iiQ(St))

2430yt ( —10 _ ot o ( —10 B
Im(e <1 +3i>) =e Im(cos(3t) + i - sin(3t)) (1 L3 ) =

o —10sin(3t)
(13) e <3cos(3t) + 3sm(3t)>

The general real-valued solution (i.e. the set of all real-valued solutions) is the
linear combination of the vector functions in (12)-(13) with real coefficients C1, Cs.
To find the solution corresponding to the given initial condition we substitute ¢ = #g
and obtain a system of linear equations for Cy, Cs.

Another way to find a solution corresponding to given initial conditions is to
work over C and use basis (10). We know that any complex-valued solution (and
in particular any real-valued solution!) is a linear combination of complex-valued
functions (10) with complex coefficients Cq,Cs. Substituting ¢ = to we obtain
a linear system for C7,C5. The matrix of this system has complexly-conjugate
columns and the right hand side is a vector in R? (if of course the initial conditions
are real, as in applications). Therefore solving this system for C7,C2 we obtain
Cy = C4. The solution takes the form

v [ =10 T v [ —10
(243i)t (2—30)t _ 9. (243i)t
Che (1 +3Z.) +Che (1 B 3Z.> — 2. Re(Cye (1 +3i> ).

where (' is a certain complex number.

9. The case that the n x n matrix A is not diagonalizable over C. This
requires the whole theory of Jordan normal forms. In this Lecture Notes I will
explain the construction of a basis in the simplest case when:

the n x n matrix A has (n — 1) distinct eigenvalues Ay, ..., A1, each of the
eigenvalues As, ..., \,_1 has algebraic multiplicity 1 (and consequently geometric
multiplicity 1) and the eigenvalue A; has algebraic multiplicity 2 and geometric
multiplicity 1.

Denote by T, ..., T,,_1 eigenvectors corresponding to A1, ..., Ap_1.

Lemma. In the case under consideration there exists a vector ﬁ, called associate
vector to 77, such that

(14) (A= \DTy = \Ty.



Construct n X n matrix

T = n x n matrix with columns Tl,ﬁ,Tg, ey Tt

Lemma. The vectors Tl,f 1,15, ..., T,_1 are linearly independent and conse-
quently the matrix T is invertible.

The equations AT; = A\;T;, i =1,...,n — 1 and the equation (14) imply

A1 0 O O ... O 0
0 » 0 0 O 0
_ 10 0 X 0 O 0 0
AT =TJ, J = 0 0 0 X3 O 0 0
0 0 0 0 0 .. 0 A1
and consequently
T 'AT =J

The matrix J is one of Jordan normal forms. Now we use the method in section 6:
we introduce Y such that X = TY, for Y we obtain the system

Y = JY,

this system can be easily solved using the method of variation of constant (see
example below), after that we transfer Y to X.

Example. Let us find the solution of the system
:c'l = 2x1 + 3x2, x’2 = —3x1 + 8x2
satisfying the initial condition

1‘1(0) = 1, 3’52(0) =3.

The matrix A = < 2 3) has only one eigenvalue Ay = 5 with algebraic multi-
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plicity 2 and geometric multiplicity 1. Calculate one of eigenvectors T} = (1) By

the given above lemma there exists an associate vector T satisfying the equation
N 1
(A=5I)- Ty =T, = <1>

This associate vector can be easily found: for example T, = (1(/)3> (the solution

for T} is not unique). Now we construct the matrix

= 1 0
T—(Tl,Tl)—(l 1>
3

and introduce Y such that X = TY. For Y we obtain the system

; (5 1
Y - (O 5) y
with the initial condition

o=t )" 0= (4 ) ()-()



Let Y = (y1(t),y=2(t)). Then

Y1 =5y1 + Y2, ys =5y, 91(0) =1, y2(0) = 6.
The equation y} = 5y2 and the initial condition y2(0) = 6 implies

Yo (t) = 6e°*
and then y] = 5y; +6e®, y;(0) = 1. This is a linear equation which can be solved
by the method of variation of constant:
y1(t) = C(t)e®, C'(t)e’ = 6e, C'(t) =6, C(t) =6t + D,
SO
y1(t) = (6t + D)e
and the initial condition y;(0) =1 gives D = 1. We obtain
y1(t) = (6t + 1)eP, ya(t) = 6e5.

Now we return to X (t):
X(t) = G g) Y(t) = G 0) . ((ﬁf;egt)est) -
- ) ,

Answer:
zy(t) = e - (6t 4+ 1), wo(t) = €’ - (6t + 3).

9. Invariant subspaces. A subspace L C C™ (in particular L C R") is called
invariant with respect to the system X’ = AX if the following holds:

if X(t) is a solution such that X (0) € L then X(¢) € L for any t € R.

Consider the case that the n x n real matrix A has n distinct complex eigenvalues
(and consequently diagonalizable over C). Divide the eigenvalues onto the following
three groups:

e the eigenvalues A1, ..., A, whose real part is negative (i.e. Re();) < 0). This group
contains real negative eigenvalues and the couples a + b where a < 0,b > 0.

e the eigenvalues p1, ..., us whose real part is positive (i.e. such that Re(u;) > 0.
This group contains real positive eigenvalues and the couples a + bi
where a > 0,b > 0.

e the eigenvalues 61, ..., 0 whose real part is equal to 0. This group contains the
zero eigenvalue and the couples £bi where b > 0.

Here r+s+k=n.

Denote now by
Ty, Ty, -, T, eigenvectors corresponding to Aq, ..., Ar,
Ty s Ty -y Ty, eigenvector corresponding to piq, o, ..., Us,
To,, Ty, ..., 1o

. €igenvectors corresponding to 61, 6s, ..., Ok.



Theorem. Let A be an n X n matrix with n distinct complex eigenvalues.
1. Each of the subspaces
Lstable — span{Tx,, Try, ..., T, }
Lunstable _ span{TM ; Tuza s TMS }
Leenter — span{Tgl,T92, - Tgk}
is invariant with respect to the system X' = AX.
2. One has C* = Lstable D Lunstable ) Lcenter.

3. A solution X (t) of the system X' = AX tends to 0 € C™ as t — 400
if and only if X(0) € Lstable,

4. A solution X (t) of the system X’ = AX tends to 0 € C" as t — —o0
if and only if X (0) € Lunstable,

4. If dimLe"" < 3 then a solution X (¢) of the system X’ = AX is periodic
if and only if X (0) € Leenter,

Remarks.

1. The subspaces Lstable [unstable [center are called invariant stable, unstable,
center subspaces respectively.

2. In the last statement of the theorem a constant function is assumed to be peri-
odic. The condition dimL"*" < 3 means, in the case of n distinct complex eigen-
values, that there are no TWO couples of eigenvalues +wyi, +wyi. This condition
holds if there is a zero eigenvalue and/or one couple of non-real complexly-conjugate
eigenvalues on the imaginary axes. If dimLc"*®" > 4 then the last statement of
the theorem holds with “periodic” replaced by “almost periodic” (an example of
an almost periodic function is f(t) = sin(t) + sin(v/2t)).

3. If there are no eigenvalues to the left of the imaginary axes then Lsteble = {0}.
If there are no eigenvalues to the right of the imaginary axes then Luvnsteble = [0},
And if there are no eigenvalues on the imaginary axes (i.e. with zero real part)
then Leenter = {0}.

4. Invariant stable, unstable, and center subspaces can also be defined (with the
same properties) if A is not diagonalizable over C, but in this case the definition is
more involved.

Example. Let A be a real 7 x 7 matrix with eigenvalue —3 and corresponding
eigenvector T € R7, eigenvalue —1 + 6i and corresponding eigenvector Tp € C7,
eigenvalue 9i and corresponding eigenvector T3 € C7, and eigenvalue 2 + 3i. Let
X (t) be the solution of the system X’ = AX satisfying the initial condition X (0) =
v € R7. Under which condition on v the solution X (¢) tends to 0 € R” as t — +o00?
Under which condition on v the solution X (¢) is periodic?

Solution. Since A is a real matrix, the stable invariant subspace of C" is
spanned by the vectors 11,75, T> and the center invariant subspace is spanned by
the vectors T3, T3. Therefore:

X(t) = 0eR” «—= ve span{Tl,Tg,Tg} = span{Tl,Re(Tg),Im(Tg)},

X(t) is periodic < v € span{Tg,Tg} = span{Re(Tg),Im(Tg)}.



