Lecture 7. Stability of equilibria of systems X' = F(X)

Consider an autonomous system of ODE’s
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We assume that f1, ..., f, are C'°° functions of n variables.
Example 1.
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Definition. A point X, € R” is called a singular point of the system (1), or an
equilibrium point of this system, if F(Xy) =0 € R™.
Like for the case n = 1 (studied in the beginning of the course) the singular

points correspond to constant solutions: the constant vector-function X (¢) = X is
a solution of (1) if and only if Xy is a singular point of this system.

Example 2. The system (2) has infinitely many singular points. They are:
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Definition. A singular point Xy € R" is called asymptotically stable if each of
the following two conditions holds:

1. For any € > 0 there exists 6 > 0 such that if v € R and ||v — Xp|| < § then (1)
has a solution X (t) satisfying the initial condition X (0) = v defined for all ¢ > 0
and such that || X (¢) — Xo|| < € for any t > 0.

2. There exists § > 0 such that if v € R™ and ||v — Xy|| < ¢ then (1) has a solution
X (t) satisfying the initial condition X (0) = v defined for all ¢ > 0 and such that
X(t) — Xo as t — +o0.

Remarks. As I explained in the class, in general requirement 1. does not
imply requirement 2. and requirement 2. does not imply requirement 1. If only
requirement 1. holds then the equilibrium point X is called stable by Lyapunov.

The stability of equilibria is very important for applications. How to determine
if an equilibrium point X is asympototically stable? In “most” (though not all)
cases the answer can be given in terms of the linear approximation of (1) at Xj.

Any C* vector-function F(X) of n variables satisfies the following equation at
any point A € R™:

F(X)=F(A)+F(4)- (X —A) +o(]|X — 4]|) as X — A.
Here F’(A) is the Jacobi matrix:
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If A= X is a singular point then F(X) = 0 and we have
F(X)=F'(Xo) (X - Xo)+o(|X — A]) as X — X.

Introducing

we obtain
Y' = F(X0)Y +o(][Y]]) asY — 0€R"™

Definition. The linear system Y’ = F’(X()Y is called the linearization of (1)
at the singular (equilibrium) point X, € R™.

For the linear system X’ = AX the question on asymptotic stability of the
singular point 0 € R" is simple enough: the singular point 0 € R" is asymptotically
stable if and only if the real part of each of the eigenvalues of A is smaller than 0 (i.e.
each of the eigenvalues is to the left of the imaginary axes). See Lecture Gn where
this statement follows from the theorem on stable, unstable, and center invariant
spaces for the case that A is diagonalizable over C. This statement remains true for
non-diagonalizable A. Is the stability of the equilibrium of the linearized system
“responsible” for the stability of the non-linear system? In “most” cases yes, but
not in all cases.

Theorem (Lyapunov). Let Xy € R" be an equilibrium point of the system
(1). Consider the Jacobi matrix F’(Xj).

A. If Re(X) < 0 for ANY eigenvalue A of the matrix F'(Xy) then Xy is asymp-
totically stable equilibrium point of (1).

B. If there exists AT LEAST ONE eigenvalue \ of the matrix F'(Xy) such that
Re(\) > 0 then X is NOT asymptotically stable point of (1).

What remains beyond cases A. and B.7 The case:

C. There are no eigenvalues with positive real part AND there are eigenvalue(s)
with zero real part (i.e. on the imaginary axes).

In case C. it is impossible to determine if X is asymptotically stable or not. Any
variant is possible and this depends on the non-linear part of the Taylor expansion
of the vector-function F'(X) at the point Xy. How depends? This is rather involved
part of the qualitative theory of dynamical systems.

Calculating the eigenvalues of an n x n matrix is not an easy task. It can be
avoided if n = 2. A simple analysis show the following.

Proposition. Let A be a real 2 x 2 matrix. The case A. holds if and only if
detA > 0 AND traceA < 0. The case B. holds if and only if either detA < 0 OR
traceA > 0. The case C. holds if either detA = 0 and traceA < 0 or detA > 0 and
traceA = 0.

Example 3 Let us determine which of the equilibria of the system (1) are
asymptotically stable. The equilibria are
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The Jacobi (linearization) matrix at Ej, are:



F/(By) = (xz -cos(x1za) X1 - cos(mlxg)) (By) = ((_1)k . (7rk:)1/3 (—1)* . (7rk‘)2/3

1 —21y 1 —2(mk)/3
Calculate
det(F'(Ey)) = (=1)**" -3 (wk)*/%,
trace(F'(Ey)) = (nk)/3 - (—=1)F = 2).
We see that:

e if k is even non-zero number then det(F'(Ey)) < 0 and consequently Fy, is not
asymptotically stable;

e if k is odd positive number then det(F'(Ey)) > 0, trace(F'(Fy)) < 0 and
consequently Fj is asymptotically stable;

e if k is odd negative number then ¢race(F’(Fg)) > 0 and consequently Ej is
not asymptotically stable;

o if k = 0 then det(F'(Ey)) = 0, trace(F'(Fy)) = 0 and in this case the Lyapunov

theorem does not allow to determine if Fy = Ey = 0) is asymptotically stable;

0
this depends on the non-linear part of the Taylor series at the point Ej.

Conclusion: the equilibrium point Ej is asymptotically stable if & is an odd
positive number. It is not asymptotically stable if £ is an even non-zero number or
if £ is an odd negative number. In the remaining case that £ = 0 we do not know
whether or not Ej, = Ej is asymptotically stable.
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