Lecture H. Systems of linear ODEs with constant coefficients

$$
\begin{equation*}
X^{\prime}=A X, \quad A \text { constant matrix } n \times n \tag{1}
\end{equation*}
$$

In (1) A is a constant $n \times n$ matrix and $X=X(t)=\left(\begin{array}{c}x_{1}(t) \\ x_{2}(t) \\ \ldots \\ x_{n}(t)\end{array}\right)$.

1. Existence of solutions defined for all t. For any $X_{0} \in \mathbb{R}^{n}$ there is a unique solution satisfying the initial condition $X(0)=X_{0} \in \mathbb{R}^{n}$. This solution can be expressed by the formulae

$$
X(t)=e^{A t} \cdot X_{0},
$$

where

$$
\begin{equation*}
e^{A t}=I+A t+\frac{A^{2} t^{2}}{2!}+\frac{A^{3} t^{3}}{3!}+\cdots . \tag{2}
\end{equation*}
$$

Here I is the identity matrix. Whatever is the matrix A, the series converges to a matrix whose entries are C^{∞} functions.
2. Shift of time. Since (1) is autonomous system (i.e. the right hand side part does not depend directly on t), given any solution $X(t)$, the vector function $X(t+s)$ is also a solution, for any $s \in \mathbb{R}$. It follows that the solution of (1) satisfying the initial condition $X\left(t_{0}\right)=X_{0} \in \mathbb{R}^{n}$ can be expressed by the formulae

$$
\begin{equation*}
X(t)=e^{A\left(t-t_{0}\right)} \cdot X_{0} \tag{3}
\end{equation*}
$$

Here $e^{A\left(t-t_{0}\right)}$ is the series (2) with t replaced by $t-t_{0}$.
3. Using (2) or (3). In applications these formulae can be used only in a small neighborhood of $t=0\left(\right.$ series (2)) or $t=t_{0}$ (series (3)).

Example. Consider the system

$$
x_{1}^{\prime}=2 x_{1}-4 x_{2}, \quad x_{2}^{\prime}=x_{1}+5 x_{2}
$$

and the initial condition

$$
x_{1}(10)=1, \quad x_{2}(10)=0 .
$$

The solution has the form

$$
\binom{x_{1}(t)}{x_{2}(t)}=\left(I+\left(\begin{array}{cc}
2 & -4 \\
1 & 5
\end{array}\right)(t-10)+\frac{\left(\begin{array}{cc}
2 & -4 \\
1 & 5
\end{array}\right)^{2}}{2}(t-10)^{2}\right) \cdot\binom{1}{0}+o(t-10)^{2} \text { as } t \rightarrow 10
$$

and we obtain

$$
\begin{gathered}
x_{1}(t)=1+2 \cdot(t-10)+o(t-10)^{2} \text { as } t \rightarrow 10 \\
x_{2}(t)=(t-10)+3.5(t-10)^{2}+o(t-10)^{2} \text { as } t \rightarrow 10
\end{gathered}
$$

4. The case of complex A. The complex-valued solutions. A complexvalued solution of (1) is a function $\mathbb{R} \rightarrow \mathbb{C}^{n}$ satisfying this equation. The complexvalued solutions are defined if A is either real or complex matrix. For any matrix A (either real or complex) the complex-valued solution of (1) satisfying the initial
condition $X\left(t_{0}\right)=X_{0} \in \mathbb{C}^{n}$ can be expressed by the same formulae (3), where the exponent is defined by the same formula (2).

Example. Consider the system

$$
\begin{equation*}
x_{1}^{\prime}=-x_{2}, \quad x_{2}^{\prime}=x_{1} \tag{4}
\end{equation*}
$$

It is easy to check that the solution satisfying the initial condition

$$
x_{1}(0)=0, \quad x_{2}(0)=0
$$

is

$$
x_{1}(t)=\cos (t), \quad x_{2}(t)=\sin (t) .
$$

On the other hand, introducing $z=x_{1}+i x_{2}$ we can write (4) as one equation for complex-valued function $z(t)$:

$$
z^{\prime}=x_{1}^{\prime}+i x_{2}^{\prime}=-x_{2}+i x_{1}=i \cdot\left(x_{1}+i x_{2}\right)=i b \cdot z
$$

The initial condition is $z(0)=1+0 i=1$. The solution is $z(t)=e^{i t} \cdot 1=e^{i t}$. Now the uniqueness theorem implies the famous

Euler formulae:

$$
e^{i t}=\cos (t)+i \cdot \sin (t)
$$

5. Theorem. If A is a real $n \times n$ matrix then the set of all real-valued solutions of (1) (defined for all t) is a subspace of the vector space of C^{∞} real-valued vectorfunctions, and this subspace has dimension n over the field \mathbb{R}. The set of complexvalued solutions of (1) is a subspace of the vector space of C^{∞} complex-valued vector-functions, and this subspace has dimension n over the field \mathbb{C}. If $X(t)$ is a non-real solution of (1) then the complex-conjugate vector function $\bar{X}(t)$ is also a solution of (1).
6. The method for finding the basis of the space of all solutions. The method is as follows. We introduce a new vector-function $Y=Y(t)$ related to $X=X(t)$ via a (transition) invertible $n \times n$ constant matrix T :

$$
X=T Y
$$

Then, substituting to (1) we obtain

$$
X^{\prime}=T Y^{\prime}=A X=A T Y
$$

and we obtain the following equation for Y :

$$
Y^{\prime}=\left(T^{-1} A T\right) Y
$$

We can take any invertible T and of course one should take T so that the matrix $T^{-1} A T$ has the simplest possible form.
7. The case that A is diagonalizable over \mathbb{R}. This case holds if the eigenvalues of A are all real and each of them has the same algebraic and geometric multiplicity. Within this case the most important one is the case when A has n real distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ (then the algebraic and the geometric multiplicity of each of the eigenvalues is 1). Consider this case. Denote

$$
T_{i}=\text { eigenvector corresponding to } \lambda_{i}
$$

and consider the matrix
$T=$ matrix with columns T_{1}, \ldots, T_{n}.

This matrix is invertible and

$$
T^{-1} A T=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)
$$

where $\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ denotes the diagonal matrix with $\lambda_{1}, \ldots, \lambda_{n}$ on the diagonal. Introducing Y such that $X=T Y$ (section 6$)$ we obtain

$$
Y^{\prime}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right) \cdot Y
$$

For this system an example of the basis of all real-valued solutions can be easily calculated:

$$
Y^{(1)}(t)=e^{\lambda_{1} t} \cdot\left(\begin{array}{c}
1 \\
0 \\
\ldots \\
0 \\
0
\end{array}\right), \cdots, \quad Y^{(n)}(t)=e^{\lambda_{n} t} \cdot\left(\begin{array}{c}
0 \\
0 \\
\ldots \\
0 \\
1
\end{array}\right)
$$

Now we should transfer this basis from Y to X. Since $X=T Y$ we simply multiply the vector functions above by T. We obtain an example of the basis

$$
X^{(1)}(t)=e^{\lambda_{1} t} T_{1}, \quad \cdots, \quad X^{(n)}(t)=e^{\lambda_{n} t} T_{n} .
$$

Example. Let us find the solution of the system

$$
x_{1}^{\prime}=x_{1}+x_{2}, \quad x_{2}^{\prime}=-2 x_{1}+4 x_{2}
$$

satisfying the initial condition

$$
x_{1}(0)=1, x_{2}(0)=-1 .
$$

We calculate the eigenvalues of the matrix $\left(\begin{array}{cc}1 & 1 \\ -2 & 4\end{array}\right)$. They are $\lambda_{1}=2, \lambda_{2}=3$, therefore the matrix is diagonalizable over \mathbb{R}. Calculate the corresponding eigenvectors $T_{1}=\binom{1}{1}, T_{2}=\binom{1}{2}$. Now we know an example of the basis of the space of all real-valued solutions:

$$
X^{(1)}(t)=e^{2 t}\binom{1}{1}, \quad X^{(2)}(t)=e^{3 t}\binom{1}{2}
$$

Any solution has the form

$$
X(t)=C_{1} e^{2 t}\binom{1}{1}+C_{2} e^{3 t}\binom{1}{2}
$$

where $C_{1}, C_{2} \in \mathbb{R}$. The coefficients C_{1}, C_{2} depend on the initial condition. The initial condition in our example is $X(0)=\binom{1}{-1}$. Substituting $t=0$ we obtain

$$
C_{1}\binom{1}{1}+C_{2}\binom{1}{2}=\binom{1}{-1}
$$

and solving this system we obtain $C_{1}=3, C_{2}=-2$.
8. The case that the real $n \times n$ matrix A is not diagonalizable over \mathbb{R} but diagonalizable over \mathbb{C}

Again, within this case I will consider the most important subcase that A has n distinct eigenvalues, but some of them are not real. Since A is real, the set of all eigenvalues is as follows:

$$
\lambda_{1}, \ldots, \lambda_{r}, \quad a_{1} \pm b_{1} i, \quad a_{2} \pm b_{2} i, \quad \ldots, \quad a_{s} \pm b_{s} i
$$

where $b_{1}, \ldots, b_{s} \neq 0$ and $r+2 s=n$. We use the same method (section 6) and we find an example of a basis of the space of all solutions in the same way as in section 7 , but now we work over the field \mathbb{C}, i.e. we find an example of a basis of the space of complex-valued solutions. It is

$$
\begin{gather*}
e^{\lambda_{1} t} T_{1}, \ldots, e^{\lambda_{r} t} T_{r} \tag{6}\\
e^{\left(a_{1}+b_{1} i\right) t} U_{1}, e^{\left(a_{1}-b_{1} i\right) t} \bar{U}_{1}, \cdots, \quad e^{\left(a_{s}+b_{s} i\right) t} U_{s}, e^{\left(a_{s}-b_{s} i\right) t} \bar{U}_{s} \tag{7}
\end{gather*}
$$

where T_{1}, \ldots, T_{r} are real eigenvectors corresponding to the real eigenvalues $\lambda_{1}, \ldots, \lambda_{r}$ and U_{1}, \ldots, U_{s} are complex eigenvectors (in \mathbb{C}^{n}) corresponding to the eigenvalues $a_{1}+b_{1} i, \ldots, a_{s}+b_{s} i$ (Then the complexly-conjugate vectors $\bar{U}_{1}, \ldots, \bar{U}_{s}$ are the eigenvectors corresponding to the eigenvalues $\left.a_{1}-b_{1} i, \ldots, a_{s}-b_{s} i\right)$.

Now we have to transfer this basis for the space of complex-valued solutions to a basis for the space of real-valued solutions. Replacing in (7) each of the couples

$$
e^{\left(a_{k}+b_{k} i\right) t} U_{1}, e^{\left(a_{k}-b_{k} i\right) t} \bar{U}_{1}, \quad k=1, \ldots, s
$$

by the couple

$$
\left(e^{\left(a_{1}+b_{1} i\right) t} U_{1}+e^{\left(a_{1}-b_{1} i\right) t} \bar{U}_{1}\right) / 2, \quad\left(e^{\left(a_{1}+b_{1} i\right) t} U_{1}-e^{\left(a_{1}-b_{1} i\right) t} \bar{U}_{1}\right) /(2 i)
$$

we obtain another example of a basis for the space of complex-valued solutions:

$$
\begin{equation*}
e^{\lambda_{1} t} T_{1}, \ldots, e^{\lambda_{r} t} T_{r} \tag{8}
\end{equation*}
$$

$\operatorname{Re}\left(e^{\left(a_{1}+b_{1} i\right) t} U_{1}\right), \operatorname{Im}\left(e^{\left(a_{1}+b_{1} i\right) t} U_{1}\right), \cdots, \operatorname{Re}\left(e^{\left(a_{s}+b_{s} i\right) t} U_{s}\right), \operatorname{Im}\left(e^{\left(a_{s}+b_{s} i\right) t} U_{s}\right)$,
where Re and Im denote the real and the imaginary parts. Since each of the vector functions in (8)-(9) is real-valued then (8)-(9) is a basis simultaneously for complexvalued and real-valued solutions. (This means that vector-functions in (8)-(9) are linearly independent over \mathbb{C} and consequently linearly independent over \mathbb{R}, and that any real-valued solution is a linear combination of these vector-functions with real coefficients, and any complex-valued solution is a linear combination of these vector-functions with complex coefficients).

Example Let us find the general solution of the system

$$
x_{1}^{\prime}=x_{1}-10 x_{2}, \quad x_{2}^{\prime}=x_{1}+3 x_{2} .
$$

The eigenvalues of the matrix $\left(\begin{array}{cc}1 & -10 \\ 1 & 3\end{array}\right)$ are $\lambda_{1,2}=2 \pm 3 i$, therefore this matrix is diagonalizable over \mathbb{C}, but not over \mathbb{R}. Find the eigenvector corresponding to $\lambda_{1}=2+3 i$, one of example is $\binom{-10}{1+3 i}$. Therefore an example of a basis for the space of all complex-valued solutions is

$$
\begin{equation*}
e^{(2+3 i) t}\binom{-10}{1+3 i}, \quad e^{(2-3 i) t}\binom{-10}{1-3 i} \tag{10}
\end{equation*}
$$

and for real-valued solutions:

$$
\begin{equation*}
\operatorname{Re}\left(e^{(2+3 i) t}\binom{-10}{1+3 i}\right), \quad \operatorname{Im}\left(e^{(2+3 i) t}\binom{-10}{1+3 i}\right) \tag{11}
\end{equation*}
$$

Using the Euler formulae (section 4) we can write down the basis (11) without complex numbers:

$$
\begin{align*}
& \left.\operatorname{Re}\left(e^{(2+3 i) t}\binom{-10}{1+3 i}\right)=e^{2 t} \cdot \operatorname{Re}(\cos (3 t)+i \cdot \sin (3 t)) \cdot\binom{-10}{1+3 i}\right)= \\
& =e^{2 t} \cdot\binom{-10 \cos (3 t)}{\cos (3 t)-3 \sin (3 t)} \tag{12}\\
& \begin{aligned}
\operatorname{Im}\left(e^{(2+3 i) t}\binom{-10}{1+3 i}\right) & \left.=e^{2 t} \cdot \operatorname{Im}(\cos (3 t)+i \cdot \sin (3 t)) \cdot\binom{-10}{1+3 i}\right)= \\
& =e^{2 t} \cdot\binom{-10 \sin (3 t)}{3 \cos (3 t)+3 \sin (3 t)}
\end{aligned}
\end{align*}
$$

The general real-valued solution (i.e. the set of all real-valued solutions) is the linear combination of the vector functions in (12)-(13) with real coefficients C_{1}, C_{2}. To find the solution corresponding to the given initial condition we substitute $t=t_{0}$ and obtain a system of linear equations for C_{1}, C_{2}.

Another way to find a solution corresponding to given initial conditions is to work over \mathbb{C} and use basis (10). We know that any complex-valued solution (and in particular any real-valued solution!) is a linear combination of complex-valued functions (10) with complex coefficients C_{1}, C_{2}. Substituting $t=t_{0}$ we obtain a linear system for C_{1}, C_{2}. The matrix of this system has complexly-conjugate columns and the right hand side is a vector in \mathbb{R}^{2} (if of course the initial conditions are real, as in applications). Therefore solving this system for C_{1}, C_{2} we obtain $C_{2}=\bar{C}_{1}$. The solution takes the form

$$
C_{1} e^{(2+3 i) t}\binom{-10}{1+3 i}+\bar{C}_{1} e^{(2-3 i) t}\binom{-10}{1-3 i}=2 \cdot \operatorname{Re}\left(C_{1} e^{(2+3 i) t}\binom{-10}{1+3 i}\right)
$$

where C_{1} is a certain complex number.
9. The case that the $n \times n$ matrix A is not diagonalizable over \mathbb{C}. This requires the whole theory of Jordan normal forms. In this Lecture Notes I will explain the construction of a basis in the simplest case when:
the $n \times n$ matrix A has $(n-1)$ distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{n-1}$, each of the eigenvalues $\lambda_{2}, \ldots, \lambda_{n-1}$ has algebraic multiplicity 1 (and consequently geometric multiplicity 1) and the eigenvalue λ_{1} has algebraic multiplicity 2 and geometric multiplicity 1.

Denote by T_{1}, \ldots, T_{n-1} eigenvectors corresponding to $\lambda_{1}, \ldots, \lambda_{n-1}$.
Lemma. In the case under consideration there exists a vector \widehat{T}_{1}, called associate vector to T_{1}, such that

$$
\begin{equation*}
\left(A-\lambda_{1} I\right) \widehat{T}_{1}=\lambda_{1} T_{1} \tag{14}
\end{equation*}
$$

Construct $n \times n$ matrix

$$
T=n \times n \text { matrix with columns } T_{1}, \widehat{T}_{1}, T_{2}, \ldots, T_{n-1}
$$

Lemma. The vectors $T_{1}, \widehat{T}_{1}, T_{2}, \ldots, T_{n-1}$ are linearly independent and consequently the matrix T is invertible.

The equations $A T_{i}=\lambda_{i} T_{i}, i=1, \ldots, n-1$ and the equation (14) imply

$$
A T=T J, \quad J=\left(\begin{array}{cccccccc}
\lambda_{1} & 1 & 0 & 0 & 0 & \ldots & 0 & 0 \\
0 & \lambda_{1} & 0 & 0 & 0 & \ldots & \ldots & 0 \\
0 & 0 & \lambda_{2} & 0 & 0 & \ldots & 0 & 0 \\
0 & 0 & 0 & \lambda_{3} & 0 & \ldots & 0 & 0 \\
\ldots & \ldots \\
0 & 0 & 0 & 0 & 0 & \ldots & 0 & \lambda_{n-1}
\end{array}\right)
$$

and consequently

$$
T^{-1} A T=J
$$

The matrix J is one of Jordan normal forms. Now we use the method in section 6: we introduce Y such that $X=T Y$, for Y we obtain the system

$$
Y^{\prime}=J Y
$$

this system can be easily solved using the method of variation of constant (see example below), after that we transfer Y to X.

Example. Let us find the solution of the system

$$
x_{1}^{\prime}=2 x_{1}+3 x_{2}, \quad x_{2}^{\prime}=-3 x_{1}+8 x_{2}
$$

satisfying the initial condition

$$
x_{1}(0)=1, x_{2}(0)=3 .
$$

The matrix $A=\left(\begin{array}{cc}2 & 3 \\ -3 & 8\end{array}\right)$ has only one eigenvalue $\lambda_{1}=5$ with algebraic multiplicity 2 and geometric multiplicity 1 . Calculate one of eigenvectors $T_{1}=\binom{1}{1}$. By the given above lemma there exists an associate vector \widehat{T} satisfying the equation

$$
(A-5 I) \cdot \widehat{T}_{1}=T_{1}=\binom{1}{1}
$$

This associate vector can be easily found: for example $\widehat{T}_{1}=\binom{0}{1 / 3}$ (the solution for \widehat{T}_{1} is not unique). Now we construct the matrix

$$
T=\left(T_{1}, \widehat{T}_{1}\right)=\left(\begin{array}{ll}
1 & 0 \\
1 & \frac{1}{3}
\end{array}\right)
$$

and introduce Y such that $X=T Y$. For Y we obtain the system

$$
Y^{\prime}=\left(\begin{array}{ll}
5 & 1 \\
0 & 5
\end{array}\right) Y
$$

with the initial condition

$$
Y(0)=\left(\begin{array}{cc}
1 & 0 \\
1 & 1 / 3
\end{array}\right)^{-1} \cdot X(0)=\left(\begin{array}{cc}
1 & 0 \\
-3 & 3
\end{array}\right) \cdot\binom{1}{3}=\binom{1}{6} .
$$

Let $Y=\left(y_{1}(t), y_{2}(t)\right)$. Then

$$
y_{1}^{\prime}=5 y_{1}+y_{2}, \quad y_{2}^{\prime}=5 y_{2}, \quad y_{1}(0)=1, \quad y_{2}(0)=6
$$

The equation $y_{2}^{\prime}=5 y_{2}$ and the initial condition $y_{2}(0)=6$ implies

$$
y_{2}(t)=6 e^{5 t}
$$

and then $y_{1}^{\prime}=5 y_{1}+6 e^{5 t}, \quad y_{1}(0)=1$. This is a linear equation which can be solved by the method of variation of constant:

$$
y_{1}(t)=C(t) e^{5 t}, \quad C^{\prime}(t) e^{5 t}=6 e^{5 t}, C^{\prime}(t)=6, C(t)=6 t+D
$$

so

$$
y_{1}(t)=(6 t+D) e^{5 t}
$$

and the initial condition $y_{1}(0)=1$ gives $D=1$. We obtain

$$
y_{1}(t)=(6 t+1) e^{5 t}, \quad y_{2}(t)=6 e^{5 t}
$$

Now we return to $X(t)$:

$$
\begin{gathered}
X(t)=\left(\begin{array}{cc}
1 & 0 \\
1 & \frac{1}{3}
\end{array}\right) \cdot Y(t)=\left(\begin{array}{cc}
1 & 0 \\
1 & \frac{1}{3}
\end{array}\right) \cdot\binom{(6 t+1) e^{5 t}}{6 e^{5 t}}= \\
=e^{5 t} \cdot\binom{6 t+1}{6 t+3}
\end{gathered}
$$

Answer:

$$
x_{1}(t)=e^{5 t} \cdot(6 t+1), \quad x_{2}(t)=e^{5 t} \cdot(6 t+3) .
$$

9. Invariant subspaces. A subspace $L \subset \mathbb{C}^{n}$ (in particular $L \subset \mathbb{R}^{n}$) is called invariant with respect to the system $X^{\prime}=A X$ if the following holds:
if $X(t)$ is a solution such that $X(0) \in L$ then $X(t) \in L$ for any $t \in \mathbb{R}$.
Consider the case that the $n \times n$ real matrix A has n distinct complex eigenvalues (and consequently diagonalizable over \mathbb{C}). Divide the eigenvalues onto the following three groups:

- the eigenvalues $\lambda_{1}, \ldots, \lambda_{r}$ whose real part is negative (i.e. $\operatorname{Re}\left(\lambda_{i}\right)<0$). This group contains real negative eigenvalues and the couples $a \pm b i$ where $a<0, b>0$.
- the eigenvalues μ_{1}, \ldots, μ_{s} whose real part is positive (i.e. such that $\operatorname{Re}\left(\mu_{i}\right)>0$. This group contains real positive eigenvalues and the couples $a \pm b i$ where $a>0, b>0$.
- the eigenvalues $\theta_{1}, \ldots, \theta_{k}$ whose real part is equal to 0 . This group contains the zero eigenvalue and the couples $\pm b i$ where $b>0$.

Here $r+s+k=n$.
Denote now by
$T_{\lambda_{1}}, T_{\lambda_{2}}, \ldots, T_{\lambda_{r}}$ eigenvectors corresponding to $\lambda_{1}, \ldots, \lambda_{r}$,
$T_{\mu_{1}}, T_{\mu_{2}}, \ldots, T_{\mu_{s}}$ eigenvector corresponding to $\mu_{1}, \mu_{2}, \ldots, \mu_{s}$,
$T_{\theta_{1}}, T_{\theta_{2}}, \ldots, T_{\theta_{k}}$ eigenvectors corresponding to $\theta_{1}, \theta_{2}, \ldots, \theta_{k}$.

Theorem. Let A be an $n \times n$ matrix with n distinct complex eigenvalues.

1. Each of the subspaces

$$
\begin{gathered}
L^{\text {stable }}=\operatorname{span}\left\{T_{\lambda_{1}}, T_{\lambda_{2}}, \ldots, T_{\lambda_{r}}\right\} \\
L^{\text {unstable }}=\operatorname{span}\left\{T_{\mu_{1}}, T_{\mu_{2}}, \ldots, T_{\mu_{s}}\right\} \\
L^{\text {center }}=\operatorname{span}\left\{T_{\theta_{1}}, T_{\theta_{2}}, \ldots, T_{\theta_{k}}\right\}
\end{gathered}
$$

is invariant with respect to the system $X^{\prime}=A X$.
2. One has $\mathbb{C}^{n}=L^{\text {stable }} \oplus L^{\text {unstable }} \oplus L^{\text {center }}$.
3. A solution $X(t)$ of the system $X^{\prime}=A X$ tends to $0 \in \mathbb{C}^{n}$ as $t \rightarrow+\infty$ if and only if $X(0) \in L^{\text {stable }}$.
4. A solution $X(t)$ of the system $X^{\prime}=A X$ tends to $0 \in \mathbb{C}^{n}$ as $t \rightarrow-\infty$ if and only if $X(0) \in L^{\text {unstable }}$.
4. If $\operatorname{dim} L^{\text {center }} \leq 3$ then a solution $X(t)$ of the system $X^{\prime}=A X$ is periodic if and only if $X(0) \in L^{\text {center }}$.

Remarks.

1. The subspaces $L^{\text {stable }}, L^{\text {unstable }}, L^{\text {center }}$ are called invariant stable, unstable, center subspaces respectively.
2. In the last statement of the theorem a constant function is assumed to be periodic. The condition $\operatorname{dimL} L^{\text {center }} \leq 3$ means, in the case of n distinct complex eigenvalues, that there are no TWO couples of eigenvalues $\pm \omega_{1} i, \pm \omega_{2} i$. This condition holds if there is a zero eigenvalue and/or one couple of non-real complexly-conjugate eigenvalues on the imaginary axes. If $\operatorname{dim} L^{\text {center }} \geq 4$ then the last statement of the theorem holds with "periodic" replaced by "almost periodic" (an example of an almost periodic function is $f(t)=\sin (t)+\sin (\sqrt{2} t))$.
3. If there are no eigenvalues to the left of the imaginary axes then $L^{\text {stable }}=\{0\}$. If there are no eigenvalues to the right of the imaginary axes then $L^{\text {unstable }}=\{0\}$. And if there are no eigenvalues on the imaginary axes (i.e. with zero real part) then $L^{\text {center }}=\{0\}$.
4. Invariant stable, unstable, and center subspaces can also be defined (with the same properties) if A is not diagonalizable over \mathbb{C}, but in this case the definition is more involved.

Example. Let A be a real 7×7 matrix with eigenvalue -3 and corresponding eigenvector $T_{1} \in \mathbb{R}^{7}$, eigenvalue $-1+6 i$ and corresponding eigenvector $T_{2} \in \mathbb{C}^{7}$, eigenvalue $9 i$ and corresponding eigenvector $T_{3} \in \mathbb{C}^{7}$, and eigenvalue $2+3 i$. Let $X(t)$ be the solution of the system $X^{\prime}=A X$ satisfying the initial condition $X(0)=$ $v \in \mathbb{R}^{7}$. Under which condition on v the solution $X(t)$ tends to $0 \in \mathbb{R}^{7}$ as $t \rightarrow+\infty$? Under which condition on v the solution $X(t)$ is periodic?

Solution. Since A is a real matrix, the stable invariant subspace of \mathbb{C}^{n} is spanned by the vectors $T_{1}, T_{2}, \bar{T}_{2}$ and the center invariant subspace is spanned by the vectors T_{3}, \bar{T}_{3}. Therefore:

$$
\begin{aligned}
X(t) \rightarrow 0 \in \mathbb{R}^{7} \Longleftrightarrow v \in \operatorname{span}\left\{T_{1}, T_{2}, \bar{T}_{2}\right\}=\operatorname{span}\left\{T_{1}, \operatorname{Re}\left(T_{2}\right), \operatorname{Im}\left(T_{2}\right)\right\} \\
X(t) \text { is periodic } \Longleftrightarrow v \in \operatorname{span}\left\{T_{3}, \bar{T}_{3}\right\}=\operatorname{span}\left\{\operatorname{Re}\left(T_{3}\right), \operatorname{Im}\left(T_{3}\right)\right\}
\end{aligned}
$$

