
Math 106A. Fall 2008. M. Zhitomirskii

Straight line phase curves and equilibrium points
for linear autonomous systems

of first order ODEs with constant coefficients

A linear autonomous systems of first order ODEs with constant co-

efficients is a system of the form X ′ = AX, where X =

X1(t)
...

Xn(t)

 is

the unknown vector-function, and A is a constant n× n matrix.

In what follows we work with real matrix A.

Definition. A straight line phase curve (= solution curve) is a phase
curve in Rn which is a PART OF a straight line passing through 0 ∈ Rn,
but not a single point.

Recall that if a phase curve is a single point then this point is an
equilibrium point.

Remark. This definition excludes phase curves contained in a straight
line that does not pass through the origin 0 ∈ Rn. In fact, in “most”
cases such phase curves do not exist. Later on we will return to this
question and will explain what is “most”, at least for n = 2.

Definition. A straight line solution is a solution

X1(t)
...

Xn(t)

 such

that the corresponding phase curve is a straight line phase curve.

Definition. The the ray generated by a vector v ∈ Rn is the set of
points {rv, r > 0} ⊂ Rn. The line generated (or spanned) by v is the
set of points {rv, r ∈ R} ⊂ Rn. See fig. 1.

Example 1. In the class I explained that for the system

X ′ =

(
2 0
0 −3

)
X

there are exactly four straight line phase curves:
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1. The ray generated by the vector

(
1
0

)
. Corresponding straight

line solution:

(
X1(t)
X2(t)

)
=

(
e2t

0

)
2. The ray generated by the vector

(
−1
0

)
. Corresponding straight

line solution:

(
X1(t)
X2(t)

)
=

(
−e2t

0

)
3. The ray generated by the vector

(
0
1

)
. Corresponding straight

line solution:

(
X1(t)
X2(t)

)
=

(
0
e−3t

)
4. The ray generated by the vector

(
0
−1

)
. Corresponding straight

line solution:

(
X1(t)
X2(t)

)
=

(
0
−e−3t

)
.

The following theorem gives a complete description of all straight line
phase curves for any system X ′ = AX. It also gives the orientation of
the straight line phase curves.

Theorem 1.

1. Let v ∈ Rn be a real eigenvector of an n×n matrix A correspond-
ing to a nonzero real eigenvalue λ. Then the ray generated by v is a
straight line phase curve for the system X ′ = AX. This ray is oriented
as follows: to 0 ∈ Rn if λ < 0 and from 0 ∈ Rn if λ > 0. One of corre-
sponding straight line solutions is the vector function X(t) = eλt · v.

2. Any straight line solution for the system X ′ = AX, where A
is an n × n matrix, is the ray generated by a real eigenvector of A
corresponding to a nonzero real eigenvalue.

In the class I proved the first statement and left the second statement
as a homework.

Remarks. Two proportional eigenvectors generate the same line,
but not necessarily the same ray. They generate the same ray if and
only if one of them can be obtained from the other by multiplication
by a positive number. Therefore as soon as we know an eigenvector
v we know TWO straight line solutions: the rays generated by v and
by −v.
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Example 2. For the matrix A in Example 1 we have two real

eigenvectors

(
1
0

)
and

(
0
1

)
corresponding to the eigenvalues λ1 = 2

and λ2 = −3. Any other eigenvector is proportional to one of these
two eigenvectors. Therefore we have exactly four oriented straight line
phase curves: the rays at fig.2.

Example 3. In the class we discussed the system of ODEs describing
a fight between two armies:

X ′ = AX, A =

(
0 −kw2

−kw1 0

)
Here X(t) =

(
x1(t)
x2(t)

)
, x1(t) is the number of soldiers in the first army,

x2(t) is the number of soldiers in the second army, and w1 and w2 in the
number of weapon in the first and the second army which is assumed
to be constant during the fight (this is of course not realistic, at least
in now-days). Computing the eigenvalues and the eigenvectors of the
matrix A we obtain:

eigenvalue λ1 = k
√
w1w2, corresponding eigenvector

( √
w2

−√w1

)
eigenvalue λ2 = −k√w1w2, corresponding eigenvector

(√
w2√
w1

)
Therefore the straight line phase curves are the four rays showed at

fig.3. The most important is the ray in the first quarter (the other three
have no sense for our problem since the number of soldiers cannot be
negative). The fact that x1(t) and x2(t) are decreasing functions imply
the phase portrait within the first quarter showed at fig. 4. According
to this phase portrait, we see that the second army wins if and only

the point

(
x1(0)
x2(0)

)
(corresponding to the beginning of the fight, t = 0)

lies above the line x2 =
√

w1

w2
x1. This means that x2(0)

x1(0)
>
√

w1

w2
. For

example, if the first army has nine times more weapon than the second
army, then the second army wins if and only if at the beginning of
the fight its number of soldiers is more than three times the number
of soldiers in the first army. We see that within our model of a fight
the number of soldiers is much more important than the number of
weapon.

Equilibrium points. Any system X ′ = AX has the equilibrium
point 0 ∈ Rn. Is this equilibrium point unique? This question can be
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put in the following equivalent form: is it true that the system of alge-
braic linear equations AX = 0 with respect to the vector X ∈ Rn has
solution v = 0 ONLY? You know the answer from liner algebra course:
this is so if and only if detA 6= 0. The latter condition is equivalent to
the condition that λ = 0 is not an eigenvalue of A. Another equivalent
condition: rankA < n (assuming that A is an n× n matrix). Thus:

Proposition 1. Let A be an n×n matrix. The following conditions
are all equivalent:

(i) the origin 0 ∈ Rn is unique equilibrium point

(ii) detA 6= 0

(iii) rankA < n

(iv) λ = 0 is not an eigenvalue of A.

Assume that detA = 0. Then there are equilibrium points except
0 ∈ Rn. The corresponding vectors in Rn are solutions of the equation
AX = 0. Equivalently, they are eigenvectors corresponding to the zero
eigenvalue. We obtain:

Theorem 2. If detA 6= 0 then 0 ∈ Rn is the only equilibrium
point of the system X ′ = AX. If detA = 0 then any eigenvector of A
corresponding to the zero eigenvalues generates the line of equilibrium
points.

Example 4. Let A =

(
1 1
1 1

)
. One has detA = 0, therefore there

is at least one line of equilibrium points. In fact there is exactly one
line of equilibrium points: all eigenvectors corresponding to the zero

eigenvalue are proportional to

(
1
−1

)
, and the line of equilibrium points

is generated by this vector. See fig. 5. Except the zero eigenvalue, A

also has eigenvalue λ = 2. The corresponding eigenvector is v =

(
1
1

)
.

Therefore there are two straight line solutions: the rays generated by
v and −v. See fig. 5.


