Math 106A. Fall 2008. M. Zhitomirskii

LN2: The vector space of all solutions of the system $X^{\prime}=A X$
Fix an $n \times n$ real matrix A. The set of all solutions of the system $X^{\prime}=A X$ is a subspace of the vector space of all smooth vectorfunctions. This follows from the linearity properties: the sum of any two solutions is a solution, and multiplying any solution by a number we also get a solution. The vector space of all vector functions is infinite-dimensional. But its subspace consisting of all solutions of the system $X^{\prime}=A X$, with a fixed matrix A, is finite-dimensional.

Theorem 1. Fix a real $n \times n$ real matrix A. The space of all solutions of the system $X^{\prime}=A X$ is a finite dimensional vector space over \mathbb{R}. Its dimension is equal to n.

In the class I proved this theorem, using the existence and uniqueness theorems for solutions of ODEs.

From linear algebra you know that:
if V is a vector space of dimension n and $v_{1}, \ldots, v_{n} \in V$ are n linearly independent vectors then $\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis of V.

This statement and Theorem 1 imply:
Theorem 2 (corollary of Theorem 1). Fix a real $n \times n$ real matrix A. Assume that the vector functions $X^{(1)}(t), \ldots, X^{(n)}(t)$ are linearly independent solutions of the system $X^{\prime}=A X$. Then $\left\{X^{(1)}(t), \ldots, X^{(n)}(t)\right\}$ is a basis of the vector space of all solutions of this system.

By Theorem 2, to present a basis of the vector space of all solutions it suffices to find n linearly independent solutions. Is it possible to do this by explicit formulas? It is. For some A it is a difficult task, for some A it is much easier. The simplest, but already very important case, is the case that A has n distinct eigenvalues. We consider this case in LN3.

