
Math 106A. Fall 2008. M. Zhitomirskii

LN3: The case of n real eigenvalues:
solving the system X ′ = AX;

the phase portraits in the two-dimensional case.

Assume that an n × n matrix A has n distinct real eigenvalues
λ1, ...λn. Then we know (see LN1) n solutions of the system X ′ = AX:
the vector functions

(1) X(1)(t) = eλ1tv1, ..., X
(n)(t) = eλntvn,

where vi is an eigenvector corresponding to λi.

Theorem 1. If λ1, ..., λn are real distinct eigenvalues then the vector
functions (1) are linearly independent over R.

Proof. Assume that the linear combinations of the vector functions
(1) with real coefficients C1, ..., Cn is the zero vector in the space of all
functions, i.e.

C1X
(1)(t) + · · ·+ CnX

(n)(t) ≡ 0.

We have to show that C1 = · · · = Cn = 0. Substitute t = 0. We obtain

(2) C1v1 + · · ·+ Cnvn = 0.

Now we use the following fact from linear algebra:

If an n × n matrix A has n distinct eigenvalues λ1, ..., λn then the
corresponding eigenvectors v1, ..., vn are linearly independent.

This fact and (2) imply C1 = · · · = Cn = 0 and we are done.

Theorem 1 and Theorem 2 of LN-2 imply:

Theorem 2. (corollary of Th. 1 and Th. 2 of LN-2) Assume
that an n × n matrix A has n real distinct eigenvalues λ1, ..., λn. Let
v1, ..., vn be corresponding eigenvectors. Then

(1)
{
eλ1tv1, ..., e

λntvn

}
is a basis of the space of all solutions of the system X ′ = AX.

Theorem 2 gives a simple way to find the solution of the system
X ′ = AX satisfying any initial condition, provided that we are within
the case of n real eigenvalues. In fact, by Theorem 2 any solution has
the form

X(t) = C1e
λ1tv1 + ...+ Cne

λntvn,
1



2

where C1, ..., Cn are certain numbers. These numbers depend on the
initial conditions and are uniquely determined by the initial conditions.
To see this, fix the initial condition X(0) = X0, where X0 is a certain
vector in Rn. Substituting t = 0 we obtain C1v1 + · · · + Cnvn =
X0. It is a system of n linear algebraic equations with respect to n
unknowns C1, ..., Cn. This system has a unique solution because the
eigenvectors v1, ..., vn are linearly independent and consequently the
coefficient matrix of this system is non-singular (its determinant is not
0). Examples: in the class, in the homeworks.

Theorem 2 in combination with our analysis of the straight line phase
curves (LN-1) and with additional arguments explained in the class
allows to draw the oriented phase curve for any system X ′ = AX
where A is a 2× 2 matrix with two real eigenvalues λ1 6= λ2. If one of
the eigenvalues is positive and the other is negative the phase portrait is
called saddle. If each of the eigenvalues is negative the phase portrait is
called sink, and If each of the eigenvalues is positive the phase portrait
is called source. Principally different phase portrait holds if one of the
eigenvalues is 0.

All phase portraits are shown and explained in fig. 1-3.


