
Math 106A. Fall 2008. M. Zhitomirskii

LN4: The case of n eigenvalues, not all are real, PART 1

Consider a system X ′ = AX where A is an n × n real matrix such
that some (or all) its eigenvalues are not real. How to find a basis of
the space of all solutions in this case?

In this case one should work over complex numbers C rather than
on real numbers R, even though the final answer contains no complex
numbers.

Definition. A complex-valued function of a real variable t is a
function of the form z(t) = A(t) + iB(t). Here i =

√−1. The function
A(t) is the real part of z(t) : A(t) = Re(z(t)). The function B(t) is the
imaginary part of z(t): B(t) = Im(z(t)). The derivative of z(t) is the
complex-valued function A′(t) + iB′(t).

In a natural way we can define the sum, difference, ratio, and mul-
tiplication of complex valued functions. We can multiply a complex-
valued function by a complex number.

A complex-valued vector function X(t) is a solution of the system
X ′ = AX if it satisfies this equation. The set of all complex-valued
solutions, when A is fixed, is closed with respect to the sum and with
respect to the multiplication by complex numbers. Therefore the set
of all solutions is a vector space over C.

The idea of solving the system X ′ = AX in the case that some of
the eigenvalues of the real n× n matrix A are not real is as follows: at
first we find n linearly independent complex valued solutions, then we
transfer them to n linearly independent real-valued solutions. As we
know, any n linearly independent real-valued solutions form a basis of
the vector space of all real-valued solutions.

Definition Given a complex number λ = a + bi ∈ C introduce the
following (EXTREMELY IMPORTANT) complex-valued function

(1) eλt = eat
(
cos(bt) + i · sin(bt)

)

In what follows in this course we will give another definition, then
(1) will be a beautiful theorem. Till that (1) will be the definition of
eλt.
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Theorem 1. For any complex numbers λ, λ1, λ2 one has

eλ1t · eλ2t = e(λ1+λ2)t

(eλt)′ = λeλt

We checked these equations in the class.

The second equation in Theorem 1 implies the following statement:

Theorem 2 (simple corollary of Theorem 1). If λ is complex
eigenvalue of A and v ∈ Cn is a corresponding eigenvalue then the
complex-valued vector function X(t) = eλt ·v is a solution of the system
X ′ = AX.

In the same way as in the case that all eigenvalues are real we prove:

Theorem 3. If a complex (in particular real) n × n matrix A has
n distinct complex eigenvalues λ1, ..., λn ∈ C and v1, ..., vn ∈ Cn are
corresponding eigenvectors then the complex valued functions

eλ1t · v1, ... , eλnt · vn

are linearly independent.

Important remark. Saying that A has n complex eigenvalues does
not exclude the case that some or even all eigenvalues are real because
R is a part of C.

Recall from linear algebra that if λ is a non-real eigenvalue of a real
matrix A then λ̄ is also an eigenvalue of A. Furthemore, if v ∈ Cn is an
eigenvector corresponding to λ then v̄ is an eigenvector corresponding
to λ̄. Therefore the eigenvalues and the corresponding eigenvectors can
be arranges as follows:

eigenvalues corresponding eigenvectors

λ1, ..., λs ∈ R v1, ..., vs ∈ Rn

µ1, µ̄1, ..., µq, µ̄q ∈ C− R w1, w̄1, ..., wq, w̄q ∈ Cn − Rn

Here s is the number of real eigenvalues and 2q is the number of non-
real eigenvalues, therefore s+2q = n. The case s = 0 means that there
are no real eigenvalues. The case q = 0 means that all the eigenvalues
are real.
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By Theorems 2 and 3 the complex-valued vector functions

eλ1tv1, ..., e
λstvs,

eµ1tw1, e
µ̄1tw̄1, ..., e

µqtwq, e
µ̄qtw̄q

(1)

are n linearly independent complex-valued solutions of the system X ′ =
AX.

Since the set of all complex-valued solutions is a vector space over
C, the n vector functions

eλ1tv1, ..., e
λstvs,

eµ1tw1 + eµ̄1tw̄1

2
,

eµ1tw1 − eµ̄1tw̄1

2i
,

...,

eµqtwq + eµ̄qtw̄q

2
,

eµqtwq − eµ̄qtw̄q

2i

(2)

are also solutions of the system X ′ = AX. Now we use the following
very simple statement from linear algebra.

Lemma. Let V be a vector space over C and let

a1, ..., ap, b1, b2 ∈ V

be linearly independent vectors. Then the vectors

a1, ..., ap, (b1 + b2)/2, (b1 − b2)/2i

are also linearly independent.

By this lemma the linear independence over C of solutions (1) implies
the linear independence over C of solutions (2). Note now that (2) are
real-valued solutions. In fact, they have the form

eλ1tv1, ..., e
λstvs,

Re
(
eµ1tw1

)
, Im

(
eµ1tw1

)
, ... , Re

(
eµqtwq

)
, Im

(
eµqtwq

)(3)

The linear independence over C implies the linear independence over
R. Thus (3) are linearly independent over R real-valued solutions.
There are n solutions in (3). Since the space of all real-valued solutions
is n-dimensional, (3) is a basis of this space. Knowing a basis we can
solve the system, i.e. to find the set of all solutions and to find the
solution satisfying any given initial condition.
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Example 1. Let A be a real 6× 6 matrix with the eigenvalues

λ1 = 1, λ2 = −2, λ3 = −3 + 4i, λ4 = 5i

and the corresponding eigenvectors

v1 =




1
0
2
4
7
0




, v2 =




3
5
0
0
−4
1




, v3 =




8 + 2i
7− 3i

0
5i
1

6 + i




, v4 =




1
4 + 2i
1 + i

0
3 + 5i

i




Let us find the solution of the system X ′ = AX satisfying the initial
condition

X(0) =




1
0
0
0
0
0




We know that there are also eigenvalues λ̄3 = −3−4i and λ̄4 = −5i.
Therefore there are n = 6 distinct eigenvalues and we can apply the
construction of a basis of the space of all solutions which is given above.
An example of a basis of the space of all real valued solutions is given
by the vector functions

eλ1tv1 , eλ2tv2, Re(eλ3tv3), Im(eλ3tv3), Re(eλ4tv4), Im(eλ4tv4)

Compute

Re(eλ3tv3) = e−3tRe

(
cos(4t) + i · sin(4t))




8 + 2i
7− 3i

0
5i
1

6 + i




)
=

(4) e−3t




8cos(4t)− 2sin(4t)
7cos(4t) + 3sin(4t)

0
−5sin(4t)
cos(4t)

6cos(4t)− sin(4t)
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Im(eλ3tv3) = e−3tIm

(
cos(4t) + i · sin(4t))




8 + 2i
7− 3i

0
5i
1

6 + i




)
=

(5) e−3t




2cos(4t) + 8sin(4t)
−3cos(4t) + 7sin(4t)

0
5cos(4t)
sin(4t)

cos(4t) + 6sin(4t)




Re(eλ4tv4) = Re

(
cos(5t) + i · sin(5t))




1
4 + 2i
1 + i

0
3 + 5i

i




)
=

(6) =




cos(5t)
4cos(5t)− 2sin(5t)
cos(5t)− sin(5t)

0
3cos(5t)− 5sin(5t)

−sin(5t)




Im(eλ4tv4) = Im

(
cos(5t) + i · sin(5t))




1
4 + 2i
1 + i

0
3 + 5i

i




)
=

(7) =




sin(5t)
2cos(5t) + 4sin(5t)
cos(5t) + sin(5t)

0
5cos(5t) + 3sin(5t)

cos(5t)




Thus we obtained a basis

etv1, e−2tv2, (4), (5), (6), (7)
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Any solution has the form

(8) X(t) = C1e
tv1 + C1e

−2tv2 + C3 · (4) + C4 · (5) + C5 · (6) + C6 · (7)

To find solution satisfying the given initial condition, substitute t = 0.
We obtain a system of linear algebraic equation for C1, .., C6:

C1




1
0
2
4
7
0




+C2




3
5
0
0
−4
1




+C3




8
7
0
0
1
6




+C4




2
−3
0
5
0
1




+C5




1
4
1
0
3
0




+C6




0
2
1
0
5
1




=




1
0
0
0
0
0




Solving this system we obtain unique solution C1, ..., C6.

Example 2. Let A be a 6× 6 matrix from the previous example. Let
us find condition on the vector X0 ∈ Rn under which the solution X(t)
of the system X ′ = AX satisfying the initial condition X(0) = X0

(a) tends to 0 if t →∞
(b) tends to 0 if t → −∞
(c) is periodic

We know that any solution has form (8). If t → ∞ then e−t →
0, (4) → 0, (5) → 0 and the other functions in (8) do not tend to 0.
Therefore the solution tends to 0 as t →∞ if C2 = C5 = C6 = 0. This
means that

X0 ∈ span
{

v1, Re(v3), Im(v3)
}

= span{v1, v3, v̄3}
.

If t → −∞ then e2t → 0 and the other functions in (8) do not tend
to 0. Therefore the solution tends to 0 as t → ∞ if C1 = C3 = C4 =
C5 = C6 = 0. This means that X0 ∈ span{v2}.

The functions (6) and (7) are periodic with the same period. The
other functions in (8) are not periodic. Therefore the solution is peri-
odic if C1 = C2 = C3 = C4 = 0. This means that

X0 ∈ span
{

Re(v4), Im(v4)
}

= span{v4, v̄4}

One can prove that the obtained conditions on X0 are not only nec-
essary, but also sufficient.

The following theorem generalizes this example.
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Theorem 4. Assume that an n × n matrix A has n distinct com-
plex eigenvalues. Let v1, ..., vs be eigenvectors corresponding to the
eigenvalues located in the left part of the complex plane (i.e. real
negative eigenvalues and non-real eigenvalues with negative real part).
Let u1, ..., up be eigenvectors corresponding to the eigenvalues located
in the right part of the complex plane (i.e. real positive eigenvalues
and non-real eigenvalues with positive real part). Let w1, ..., wq be the
eigenvectors corresponding to to the eigenvalues located on the imag-
inary axes of the complex plane (i.e. pure imaginary eigenvalues and
the zero eigenvalue). Let X(t) be the solution of the system X ′ = AX
satisfying the initial condition X(0) = X0. The following statement
hold:

1. X(t) → 0 as t →∞ if and only if X0 ∈ span{v1, ..., vs}
2. X(t) → 0 as t → −∞ if and only if X0 ∈ span{u1, ..., up}
3. If X(t) is periodic then X0 ∈ span{w1, .., wq}. For q = 2 or q = 3

then if can be replaced by if and only if.

Remark. The case q = 2 means that there is a couple of pure imag-
inary eigenvalues ±βi, β 6= 0 and there is no zero eigenvalue. The
case q = 3 means that there is a couple of pure imaginary eigenval-
ues and the zero eigenvalue. If q ≥ 4 and X0 ∈ span{w1, ..., wq} then
the solution might be not periodic, but it is always “almost periodic”
(explained in the class).


