Math 106A. Fall 2008. M. Zhitomirskii

LN4: The case of n eigenvalues, not all are real, PART 1

Consider a system $X^{\prime}=A X$ where A is an $n \times n$ real matrix such that some (or all) its eigenvalues are not real. How to find a basis of the space of all solutions in this case?

In this case one should work over complex numbers \mathbb{C} rather than on real numbers \mathbb{R}, even though the final answer contains no complex numbers.

Definition. A complex-valued function of a real variable t is a function of the form $z(t)=A(t)+i B(t)$. Here $i=\sqrt{-1}$. The function $A(t)$ is the real part of $z(t): A(t)=\operatorname{Re}(z(t))$. The function $B(t)$ is the imaginary part of $z(t): B(t)=\operatorname{Im}(z(t))$. The derivative of $z(t)$ is the complex-valued function $A^{\prime}(t)+i B^{\prime}(t)$.

In a natural way we can define the sum, difference, ratio, and multiplication of complex valued functions. We can multiply a complexvalued function by a complex number.

A complex-valued vector function $X(t)$ is a solution of the system $X^{\prime}=A X$ if it satisfies this equation. The set of all complex-valued solutions, when A is fixed, is closed with respect to the sum and with respect to the multiplication by complex numbers. Therefore the set of all solutions is a vector space over \mathbb{C}.

The idea of solving the system $X^{\prime}=A X$ in the case that some of the eigenvalues of the real $n \times n$ matrix A are not real is as follows: at first we find n linearly independent complex valued solutions, then we transfer them to n linearly independent real-valued solutions. As we know, any n linearly independent real-valued solutions form a basis of the vector space of all real-valued solutions.

Definition Given a complex number $\lambda=a+b i \in \mathbb{C}$ introduce the following (EXTREMELY IMPORTANT) complex-valued function

$$
\begin{equation*}
e^{\lambda t}=e^{a t}(\cos (b t)+i \cdot \sin (b t)) \tag{1}
\end{equation*}
$$

In what follows in this course we will give another definition, then (1) will be a beautiful theorem. Till that (1) will be the definition of $e^{\lambda t}$.

Theorem 1. For any complex numbers $\lambda, \lambda_{1}, \lambda_{2}$ one has

$$
\begin{aligned}
e^{\lambda_{1} t} \cdot e^{\lambda_{2} t} & =e^{\left(\lambda_{1}+\lambda_{2}\right) t} \\
\left(e^{\lambda t}\right)^{\prime} & =\lambda e^{\lambda t}
\end{aligned}
$$

We checked these equations in the class.
The second equation in Theorem 1 implies the following statement:
Theorem 2 (simple corollary of Theorem 1). If λ is complex eigenvalue of A and $v \in \mathbb{C}^{n}$ is a corresponding eigenvalue then the complex-valued vector function $X(t)=e^{\lambda t} \cdot v$ is a solution of the system $X^{\prime}=A X$.

In the same way as in the case that all eigenvalues are real we prove:
Theorem 3. If a complex (in particular real) $n \times n$ matrix A has n distinct complex eigenvalues $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{C}$ and $v_{1}, \ldots, v_{n} \in \mathbb{C}^{n}$ are corresponding eigenvectors then the complex valued functions

$$
e^{\lambda_{1} t} \cdot v_{1}, \ldots, e^{\lambda_{n} t} \cdot v_{n}
$$

are linearly independent.
Important remark. Saying that A has n complex eigenvalues does not exclude the case that some or even all eigenvalues are real because \mathbb{R} is a part of \mathbb{C}.

Recall from linear algebra that if λ is a non-real eigenvalue of a real matrix A then $\bar{\lambda}$ is also an eigenvalue of A. Furthemore, if $v \in \mathbb{C}^{n}$ is an eigenvector corresponding to λ then \bar{v} is an eigenvector corresponding to $\bar{\lambda}$. Therefore the eigenvalues and the corresponding eigenvectors can be arranges as follows:
eigenvalues corresponding eigenvectors
$\lambda_{1}, \ldots, \lambda_{s} \in \mathbb{R}$
$v_{1}, \ldots, v_{s} \in \mathbb{R}^{n}$
$\mu_{1}, \bar{\mu}_{1}, \ldots, \mu_{q}, \bar{\mu}_{q} \in \mathbb{C}-\mathbb{R}$

$$
w_{1}, \bar{w}_{1}, \ldots, w_{q}, \bar{w}_{q} \in \mathbb{C}^{n}-\mathbb{R}^{n}
$$

Here s is the number of real eigenvalues and $2 q$ is the number of nonreal eigenvalues, therefore $s+2 q=n$. The case $s=0$ means that there are no real eigenvalues. The case $q=0$ means that all the eigenvalues are real.

By Theorems 2 and 3 the complex-valued vector functions

$$
\begin{array}{r}
e^{\lambda_{1} t} v_{1}, \ldots, e^{\lambda_{s} t} v_{s}, \\
e^{\mu_{1} t} w_{1}, e^{\bar{\mu}_{1} t} \bar{w}_{1}, \ldots, e^{\mu_{q} t} w_{q}, e^{\bar{\mu}_{q} t} \bar{w}_{q} \tag{1}
\end{array}
$$

are n linearly independent complex-valued solutions of the system $X^{\prime}=$ $A X$.

Since the set of all complex-valued solutions is a vector space over \mathbb{C}, the n vector functions

$$
\begin{array}{r}
\frac{e^{\mu_{1} t} w_{1}+e^{\bar{\mu}_{1} t} \bar{w}_{1}}{2}, \frac{e^{\lambda_{1} t} v_{1}, \ldots, e^{\lambda_{s} t} v_{s},}{2 i} w_{1}-e^{\bar{\mu}_{1} t} \bar{w}_{1} \\
\ldots \tag{2}\\
\frac{e^{\mu_{q} t} w_{q}+e^{\bar{\mu}_{q} t} \bar{w}_{q}}{2}, \\
\frac{e^{\mu_{q} t} w_{q}-e^{\bar{\mu}_{q} t} \bar{w}_{q}}{2 i}
\end{array}
$$

are also solutions of the system $X^{\prime}=A X$. Now we use the following very simple statement from linear algebra.

Lemma. Let V be a vector space over \mathbb{C} and let

$$
a_{1}, \ldots, a_{p}, b_{1}, b_{2} \in V
$$

be linearly independent vectors. Then the vectors

$$
a_{1}, \ldots, a_{p},\left(b_{1}+b_{2}\right) / 2,\left(b_{1}-b_{2}\right) / 2 i
$$

are also linearly independent.
By this lemma the linear independence over \mathbb{C} of solutions (1) implies the linear independence over \mathbb{C} of solutions (2). Note now that (2) are real-valued solutions. In fact, they have the form

$$
\begin{array}{r}
e^{\lambda_{1} t} v_{1}, \ldots, e^{\lambda_{s} t} v_{s}, \\
\operatorname{Re}\left(e^{\mu_{1} t} w_{1}\right), \operatorname{Im}\left(e^{\mu_{1} t} w_{1}\right), \ldots, \operatorname{Re}\left(e^{\mu_{q} t} w_{q}\right), \operatorname{Im}\left(e^{\mu_{q} t} w_{q}\right) \tag{3}
\end{array}
$$

The linear independence over \mathbb{C} implies the linear independence over \mathbb{R}. Thus (3) are linearly independent over \mathbb{R} real-valued solutions. There are n solutions in (3). Since the space of all real-valued solutions is n-dimensional, (3) is a basis of this space. Knowing a basis we can solve the system, i.e. to find the set of all solutions and to find the solution satisfying any given initial condition.

Example 1. Let A be a real 6×6 matrix with the eigenvalues

$$
\lambda_{1}=1, \lambda_{2}=-2, \lambda_{3}=-3+4 i, \lambda_{4}=5 i
$$

and the corresponding eigenvectors

$$
v_{1}=\left(\begin{array}{l}
1 \\
0 \\
2 \\
4 \\
7 \\
0
\end{array}\right), \quad v_{2}=\left(\begin{array}{c}
3 \\
5 \\
0 \\
0 \\
-4 \\
1
\end{array}\right), \quad v_{3}=\left(\begin{array}{c}
8+2 i \\
7-3 i \\
0 \\
5 i \\
1 \\
6+i
\end{array}\right), \quad v_{4}=\left(\begin{array}{c}
1 \\
4+2 i \\
1+i \\
0 \\
3+5 i \\
i
\end{array}\right)
$$

Let us find the solution of the system $X^{\prime}=A X$ satisfying the initial condition

$$
X(0)=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

We know that there are also eigenvalues $\bar{\lambda}_{3}=-3-4 i$ and $\bar{\lambda}_{4}=-5 i$. Therefore there are $n=6$ distinct eigenvalues and we can apply the construction of a basis of the space of all solutions which is given above. An example of a basis of the space of all real valued solutions is given by the vector functions

$$
e^{\lambda_{1} t v_{1}}, e^{\lambda_{2} t} v_{2}, \operatorname{Re}\left(e^{\lambda_{3} t} v_{3}\right), \operatorname{Im}\left(e^{\lambda_{3} t} v_{3}\right), \operatorname{Re}\left(e^{\lambda_{4} t} v_{4}\right), \operatorname{Im}\left(e^{\lambda_{4} t} v_{4}\right)
$$

Compute

$$
\left.\operatorname{Re}\left(e^{\lambda_{3} t} v_{3}\right)=e^{-3 t} \operatorname{Re}(\cos (4 t)+i \cdot \sin (4 t))\left(\begin{array}{c}
8+2 i \\
7-3 i \\
0 \\
5 i \\
1 \\
6+i
\end{array}\right)\right)=
$$

$$
e^{-3 t}\left(\begin{array}{c}
8 \cos (4 t)-2 \sin (4 t) \tag{4}\\
7 \cos (4 t)+3 \sin (4 t) \\
0 \\
-5 \sin (4 t) \\
\cos (4 t) \\
6 \cos (4 t)-\sin (4 t)
\end{array}\right)
$$

(5)
(6)

$$
\begin{aligned}
\operatorname{Re}\left(e^{\lambda_{4} t} v_{4}\right)= & \left.\operatorname{Re}(\cos (5 t)+i \cdot \sin (5 t))\left(\begin{array}{c}
1 \\
4+2 i \\
1+i \\
0 \\
3+5 i \\
i
\end{array}\right)\right)= \\
& =\left(\begin{array}{c}
\cos (5 t) \\
4 \cos (5 t)-2 \sin (5 t) \\
\cos (5 t)-\sin (5 t) \\
0 \\
3 \cos (5 t)-5 \sin (5 t) \\
-\sin (5 t)
\end{array}\right) \\
\operatorname{Im}\left(e^{\lambda_{4} t} v_{4}\right)= & \operatorname{Im}\left(\begin{array}{c}
\cos (5 t)+i \cdot \sin (5 t))\left(\begin{array}{c}
1 \\
4+2 i \\
1+i \\
0 \\
3+5 i \\
i
\end{array}\right)
\end{array}\right)= \\
& =\left(\begin{array}{c}
2 \sin (5 t) \\
\cos (5 t)+4 \sin (5 t) \\
0 \\
5 \cos (5 t)+3 \sin (5 t) \\
\cos (5 t)
\end{array}\right)\left(\begin{array}{c}
\\
\sin)
\end{array}\right)
\end{aligned}
$$

Thus we obtained a basis

$$
\begin{equation*}
e^{t} v_{1}, e^{-2 t} v_{2},(4),(5),(6) \tag{7}
\end{equation*}
$$

Any solution has the form
(8) $X(t)=C_{1} e^{t} v_{1}+C_{1} e^{-2 t} v_{2}+C_{3} \cdot(4)+C_{4} \cdot(5)+C_{5} \cdot(6)+C_{6}$.

To find solution satisfying the given initial condition, substitute $t=0$.
We obtain a system of linear algebraic equation for $C_{1}, . ., C_{6}$:
$C_{1}\left(\begin{array}{l}1 \\ 0 \\ 2 \\ 4 \\ 7 \\ 0\end{array}\right)+C_{2}\left(\begin{array}{c}3 \\ 5 \\ 0 \\ 0 \\ -4 \\ 1\end{array}\right)+C_{3}\left(\begin{array}{l}8 \\ 7 \\ 0 \\ 0 \\ 1 \\ 6\end{array}\right)+C_{4}\left(\begin{array}{c}2 \\ -3 \\ 0 \\ 5 \\ 0 \\ 1\end{array}\right)+C_{5}\left(\begin{array}{l}1 \\ 4 \\ 1 \\ 0 \\ 3 \\ 0\end{array}\right)+C_{6}\left(\begin{array}{l}0 \\ 2 \\ 1 \\ 0 \\ 5 \\ 1\end{array}\right)=\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right)$
Solving this system we obtain unique solution C_{1}, \ldots, C_{6}.
Example 2. Let A be a 6×6 matrix from the previous example. Let us find condition on the vector $X_{0} \in \mathbb{R}^{n}$ under which the solution $X(t)$ of the system $X^{\prime}=A X$ satisfying the initial condition $X(0)=X_{0}$
(a) tends to 0 if $t \rightarrow \infty$
(b) tends to 0 if $t \rightarrow-\infty$
(c) is periodic

We know that any solution has form (8). If $t \rightarrow \infty$ then $e^{-t} \rightarrow$ 0 , (4) $\rightarrow 0$, (5) $\rightarrow 0$ and the other functions in (8) do not tend to 0 . Therefore the solution tends to 0 as $t \rightarrow \infty$ if $C_{2}=C_{5}=C_{6}=0$. This means that

$$
X_{0} \in \operatorname{span}\left\{v_{1}, \operatorname{Re}\left(v_{3}\right), \operatorname{Im}\left(v_{3}\right)\right\}=\operatorname{span}\left\{v_{1}, v_{3}, \bar{v}_{3}\right\}
$$

If $t \rightarrow-\infty$ then $e^{2 t} \rightarrow 0$ and the other functions in (8) do not tend to 0 . Therefore the solution tends to 0 as $t \rightarrow \infty$ if $C_{1}=C_{3}=C_{4}=$ $C_{5}=C_{6}=0$. This means that $X_{0} \in \operatorname{span}\left\{v_{2}\right\}$.

The functions (6) and (7) are periodic with the same period. The other functions in (8) are not periodic. Therefore the solution is periodic if $C_{1}=C_{2}=C_{3}=C_{4}=0$. This means that

$$
X_{0} \in \operatorname{span}\left\{\operatorname{Re}\left(v_{4}\right), \operatorname{Im}\left(v_{4}\right)\right\}=\operatorname{span}\left\{v_{4}, \bar{v}_{4}\right\}
$$

One can prove that the obtained conditions on X_{0} are not only necessary, but also sufficient.

The following theorem generalizes this example.

Theorem 4. Assume that an $n \times n$ matrix A has n distinct complex eigenvalues. Let v_{1}, \ldots, v_{s} be eigenvectors corresponding to the eigenvalues located in the left part of the complex plane (i.e. real negative eigenvalues and non-real eigenvalues with negative real part). Let u_{1}, \ldots, u_{p} be eigenvectors corresponding to the eigenvalues located in the right part of the complex plane (i.e. real positive eigenvalues and non-real eigenvalues with positive real part). Let w_{1}, \ldots, w_{q} be the eigenvectors corresponding to to the eigenvalues located on the imaginary axes of the complex plane (i.e. pure imaginary eigenvalues and the zero eigenvalue). Let $X(t)$ be the solution of the system $X^{\prime}=A X$ satisfying the initial condition $X(0)=X_{0}$. The following statement hold:

1. $X(t) \rightarrow 0$ as $t \rightarrow \infty$ if and only if $X_{0} \in \operatorname{span}\left\{v_{1}, \ldots, v_{s}\right\}$
2. $X(t) \rightarrow 0$ as $t \rightarrow-\infty$ if and only if $X_{0} \in \operatorname{span}\left\{u_{1}, \ldots, u_{p}\right\}$
3. If $X(t)$ is periodic then $X_{0} \in \operatorname{span}\left\{w_{1}, . ., w_{q}\right\}$. For $q=2$ or $q=3$ then if can be replaced by if and only if.
Remark. The case $q=2$ means that there is a couple of pure imaginary eigenvalues $\pm \beta i, \beta \neq 0$ and there is no zero eigenvalue. The case $q=3$ means that there is a couple of pure imaginary eigenvalues and the zero eigenvalue. If $q \geq 4$ and $X_{0} \in \operatorname{span}\left\{w_{1}, \ldots, w_{q}\right\}$ then the solution might be not periodic, but it is always "almost periodic" (explained in the class).
