
Math 106A. Fall 2008. M. Zhitomirskii

LN5: The case of < n complex eigenvalues (repeated eigenvalues)

In this case we need a few more statements and definitions from
linear algebra.

At first recall the principal theorem of algebra. Its complete formu-
lation is as follows.

Theorem 1. Any polynomial P (x) of degree n ≥ 1 has at least one
complex root and not more than n complex roots. Let s be the number
of complex roots and let x1, ..., xs be these complex roots. Then P (x)
can be written in the form (factorization)

P (x) = a · (x− x1)
µ1(x− x2)

µ2 · · · · · (x− xs)
µs

where µ1, ..., µs are integers ≥ 1 whose sum is equal to n and a is the
coefficient of P (x) at xn.

Definition. The number µi is called the multiplicity of the root xi.

Recall that a complex number is an eigenvalue of an n×n matrix A
if it is a root of the characteristic polynomial P (λ) = det(A−λn). The
characteristic polynomial has degree n. Its coefficient at λn is equal to
1. Therefore

(1) P (λ) = (λ− λ1)
µ1(λ− λ2)

µ2 · · · · · (λ− λs)
µs

where λ1, ..., λs are (distinct) eigenvalues of the matrix A.

Definition. The multiplicity of an eigenvalue λi, also called the
algebraic multiplicity of λi, is the number µi in (1), i.e. the multiplicity
of the root λi of the characteristic polynomial.

The sum of the multiplicities of the eigenvalues of an n × n matrix
A is equal to n:

µ1 + · · ·+ µs = n

. It follows that if A has n distinct eigenvalues (i.e. s = n) then
µ1 = · · · = µs = 1. If A has less than n eigenvalues then the multiplicity
of at least one of the eigenvalues is ≥ 2.

Example. For a 2× 2 matrix A one of the following holds:

a. A has two eigenvalues, each of algebraic multiplicity 1

b. A has one eigenvalue of algebraic multiplicity 2.

Example. For a 3× 3 matrix A one of the following holds:

a. A has three eigenvalues, each of algebraic multiplicity 1
1
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b. A has two eigenvalues, one of algebraic multiplicity 1, the other
of algebraic multiplicity 2

c. A has one eigenvalue of algebraic multiplicity 3.

The terminology “algebraic multiplicity” suggests that there is an-
other, “geometric multiplicity”.

Definition. The geometric multiplicity of an eigenvalue λi of an
n× n matrix A is the number

n− rank(A− λiI)

also called the corank of the matrix A− λiI.

Since det(A − λiI) = 0 then rank(A − λiI) < n and consequently
the geometric multiplicity of any eigenvalue is an integer ≥ 1. Since
the minimal possible value for the rank of any n×n matrix A is 0 (the
rank is equal to zero if and only if A = 0), the geometric multiplicity
of any eigenvalue of an n× n matrix does not exceed n.

Is any integer from 1 to n realizable? More precisely, fix an integer
q ∈ {1, ..., n}. Can we construct an n × n matrix such that one of its
eigenvalue has geometric multiplicity q? The answer is yes. Neverthe-
less, if we fix the algebraic multiplicity the answer is no. Namely, the
following theorem holds.

Theorem 2. The geometric multiplicity of any eigenvalue of any n×
n matrix does not exceed the algebraic multiplicity of this eigenvalue.

Example. Let A be a 2 × 2 matrix with only one eigenvalue λ1.
Then the algebraic multiplicity of λ1 is equal to 2. The geometric
multiplicity of λ1 is either 1 or 2. It is equal to 2 if and only if
(2)

rank(A− λ1I) = 0 ⇔ A− λ1I = 0 ⇔ A = λ1I ⇔ A =

(
λ1 0
0 λ1

)
.

How to construct a 2×2 matrix with the only eigenvalue of geometric
multiplicity 1? It is easy. One should use the following theorem.

Theorem 3. If λ1, ..., λs are all the eigenvalues of an n× n matrix
A, with algebraic multiplicities µ1, ..., µs then

traceA = µ1λ1 + · · ·+ µsλs (the “sum with multiplicities”)

detA = λµ1

1 · · · · · λµs
s (the “product with multiplicities”)
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Recall that the couple (trace, det) defines uniquely the eigenvalues
of any 2 × 2 matrix (but not a n × n matrix with n ≥ 3). Therefore
one has the following

Corollary. A 2× 2 matrix A has only one eigenvalue λ1 if and only
if traceA = 2λ1 and detA = λ2

1. If this is so, the geometric multiplicity
of λ1 is equal to 1 provided that A is not diagonal (i.e. not of form
(2)). If A has form (2) then the geometric multiplicity of λ1 is equal
to 2.

Example. To construct a 2 × 2 matrix with the only eigenvalue 3
of geometric multiplicity 1 take any non-diagonal matrix with trace 6

and determinant 9, for example

(
2 1
−1 4

)
.

Example Let us find the algebraic and geometric multiplicities of
the matrix 


a b c
0 d e
0 0 7




The characteristic polynomial is P (λ) = (λ− a)(λ− d)(λ− 7). There
are the following cases:

Case 1. a 6= d, a 6= 7, d 6= 7. In these case we have 3 eigenval-
ues a, d, 7 and we know (without computing) that each of them has
algebraic multiplicity 1 and geometric multiplicity 1.

Case 2. a 6= 7, d = 7, i.e. the matrix has the form




a b c
0 7 e
0 0 7


.

In this case we have two eigenvalues: a and 7. The eigenvalue a has
algebraic multiplicity 1 and consequently the geometric multiplicity
1. The eigenvalue 7 has algebraic multiplicity 2 and consequently its
geometric multiplicity is either 1 or 2. To see when it is 1 and when it
is 2 one has to compute the rank of the matrix




a b c
0 7 e
0 0 7


− 7I =




a− 7 b c
0 0 e
0 0 0




Since a 6= 7, the rank is 2 if e 6= 0 and 1 if e = 0. Therefore the
geometric multiplicity of the eigenvalue 7 is equal to 1 if e 6= 0 and to
2 if e = 0.
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Case 3. a = 7, d 6= 7 i.e. the matrix has the form




7 b c
0 d e
0 0 7


.

In this case we have two eigenvalues: d and 7. The eigenvalue d has
algebraic multiplicity 1 and consequently the geometric multiplicity
1. The eigenvalue 7 has algebraic multiplicity 2 and consequently its
geometric multiplicity is either 1 or 2. To see when it is 1 and when it
is 2 one has to compute the rank of the matrix




7 b c
0 d e
0 0 7


− 7I =




0 b c
0 d− 7 e
0 0 0




The rank depends on the number r = be− c(d− 7), whether it is equal
to 0 or not. If r 6= 0 then the rank is equal to 2 and consequently the
geometric multiplicity of the eigenvalues 7 is equal to 1. If r = 0 then
the rank is equal to 1 and consequently the geometric multiplicity of
the eigenvalues 7 is equal to 2.

Case 4. a = d 6= 7, i.e. the matrix has the form




a b c
0 a e
0 0 7


.

In this case we have two eigenvalues: a and 7. The eigenvalue 7 has
algebraic multiplicity 1 and consequently the geometric multiplicity
1. The eigenvalue a has algebraic multiplicity 2 and consequently its
geometric multiplicity is either 1 or 2. To see when it is 1 and when it
is 2 one has to compute the rank of the matrix




a b c
0 a e
0 0 7


− aI =




0 b c
0 0 e
0 0 7− a


 .

It depends on the number b: if b 6= 0 then the rank is 2 and consequently
the geometric multiplicity of the eigenvalues a is equal to 1. If b = 0
then the rank is 1 and consequently the geometric multiplicity of the
eigenvalues a is equal to 2.

Case 5 (the last possibility). a = d = 7, i.e. the matrix has the

form




7 b c
0 7 e
0 0 7


. In this case there is only one eigenvalue 7. Its alge-

braic multiplicity equals 3 and consequently its geometric multiplicity
is either 1 or 2 or 3. To see when it is 1, when 2, and when 3, one has
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to compute the rank of the matrix


7 b c
0 7 e
0 0 7


− 7I =




0 b c
0 0 e
0 0 0


 .

If e 6= 0 and b 6= 0 then the rank equals 2 and consequently the geo-
metric multiplicity of the eigenvalue 7 is 1.
If e 6= 0 and b = 0 then the rank equals 1 and consequently the geo-
metric multiplicity of the eigenvalue 7 is 2.
If e 6= 0 and at leat one of the numbers b, c is different from 0 then
the rank equals 1 and consequently the geometric multiplicity of the
eigenvalue 7 is 2.
finally, if e = b = c = 0 then the rank equals 0 and consequently the
geometric multiplicity of the eigenvalue 7 is 3.

Theorem 4. Let A be an n × n and let λi be an eigenvalue of
algebraic multiplicity 2.

1. If the geometric multiplicity of λi is 1 then there exist a couple
of vectors vi 6= 0, v′i 6= 0 such that

Avi = λiv1, Av′i = λiv
′
i + vi

Any vectors vimv′i satisfying these conditions are linearly independent.

Here vi is an eigenvector corresponding to λi and v′i can be called a
vector associated with vi.

2. If the geometric multiplicity of λi is 2 then there exists two

linearly independent eigenvectors v
(1)
i , v

(2)
i corresponding to λi.

The role of the associated eigenvector v′i for solving the system X ′ =
AX is as follows.

Theorem 5. Let A be an n × n and let λi be an eigenvalue of
algebraic multiplicity 2 and geometric multiplicity 1. Let vi be an
eigenvector corresponding to λi. The, as we know, the vector function
X(t) = eλitvi is a solution of the system X ′ = AX. Another, linearly
independent solution is

X(t) = eλit
(
tvi + v′i

)
,

where v′i is a vector associated with the eigenvector vi.

In view of Theorems 4 and 5 we define one solution associated with
an eigenvalue of algebraic multiplicity 1 and two solutions associated
with an eigenvalue of multiplicity 2 as follows:
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Definition 6.

1. A solution of the system X ′ = AX associated with eigenvalue
λi of algebraic multiplicity 1 is eλitvi where vi is an eigenvector corre-
sponding to λi.

2. A couple of solutions of the system X ′ = AX associated with
eigenvalue λi of algebraic multiplicity 2 and geometric multiplicity 1 is
the couple

eλitvi, eλit
(
tvi + v′i

)
,

where v′i is a vector associated with the eigenvector vi. See the first
statement of Theorem 4.

3. A couple of solutions of the system X ′ = AX associated with
eigenvalue λi of algebraic multiplicity 2 and geometric multiplicity 2 is
the couple

eλitv
(1)
i , eλitv

(2)
i

where v
(1)
i and v

(2)
i are linearly independent vectors corresponding to

λi. See the second statement of Theorem 4.

Theorem 7. Let A be an n× n matrix such that each of its eigen-
values has algebraic multiplicity 1 or 2. Collect the solutions of the
system X ′ = AX associated with all the eigenvalues (see Definition 6).
We obtain n solutions. They are linearly independent and consequently
these n solutions is a basis of the vector space of all solutions.

Theorem 7 allows to solve any system X ′ = AX where n×n matrix
A has eigenvalues of algebraic multiplicities ≤ 2.

Example. Let

A =




4 1 2
0 7 a
0 0 7


 .

Let us find abasis of the space of all solutions of the system X ′ = AX.

The matrix A has eigenvalue 4 of algebraic multiplicity 1 and the
eigenvalue 7 of algebraic multiplicity 2. Compute the eigenvector cor-

responding to the eigenvalue 4:




1
0
0


. Therefore the solution corre-

sponding to the eigenvalue 4 is e4t




1
0
0


.
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The geometric multiplicity of the eigenvalue 7 is 1 if a 6= 0 and is 2
if a = 0. Therefore we must consider the following two cases.

The case a 6= 0. In this case the geometric multiplicity of the eigen-
value 7 is 1 and we must compute an eigenvector v and an associated
vector v′. The eigenvector v is a solution of the system


−3 1 2
0 0 a
0 0 0


 · v = 0

and we can take v =




1
3
0


 . The associated eigenvector v′ is a solution

of the system 

−3 1 2
0 0 a
0 0 0


 · v′ = v =




1
3
0




and we can take for example v′ =




2/a
1

3/a


 . We obtain the following

couple of solutions corresponding to the eigenvalue 7: e7t




1
3
0


 and

e7t

(
t ·




1
3
0


 +




2/a
1

3/a




)
. We obtain the following basis of the space of

all solutions:

e4t




1
0
0


 , e7t




1
3
0


 , e7t




2/a + t
1 + 3t
3/a




The case a=0. In this case the geometric multiplicity of the eigen-
value 7 is 2 and there are two linearly independent eigenvectors corre-
sponding to this eigenvalue. They are solutions of the system


−3 1 2
0 0 0
0 0 0


 · v = 0

and we can take for example

v(1) =




1
3
0


 , v(2) =




2
0
3


 .
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We obtain a basis of the space of all solutions:

e4t




1
0
0


 , e7t




1
3
0


 , e7t




2
0
3





