Math 106A. Fall 2008. M. Zhitomirskii

LN5: The case of $<n$ complex eigenvalues (repeated eigenvalues)

In this case we need a few more statements and definitions from linear algebra.

At first recall the principal theorem of algebra. Its complete formulation is as follows.

Theorem 1. Any polynomial $P(x)$ of degree $n \geq 1$ has at least one complex root and not more than n complex roots. Let s be the number of complex roots and let x_{1}, \ldots, x_{s} be these complex roots. Then $P(x)$ can be written in the form (factorization)

$$
P(x)=a \cdot\left(x-x_{1}\right)^{\mu_{1}}\left(x-x_{2}\right)^{\mu_{2}} \cdots \cdot\left(x-x_{s}\right)^{\mu_{s}}
$$

where μ_{1}, \ldots, μ_{s} are integers ≥ 1 whose sum is equal to n and a is the coefficient of $P(x)$ at x^{n}.

Definition. The number μ_{i} is called the multiplicity of the root x_{i}.
Recall that a complex number is an eigenvalue of an $n \times n$ matrix A if it is a root of the characteristic polynomial $P(\lambda)=\operatorname{det}(A-\lambda n)$. The characteristic polynomial has degree n. Its coefficient at λ^{n} is equal to 1. Therefore

$$
\begin{equation*}
P(\lambda)=\left(\lambda-\lambda_{1}\right)^{\mu_{1}}\left(\lambda-\lambda_{2}\right)^{\mu_{2}} \cdots\left(\lambda-\lambda_{s}\right)^{\mu_{s}} \tag{1}
\end{equation*}
$$

where $\lambda_{1}, \ldots, \lambda_{s}$ are (distinct) eigenvalues of the matrix A.
Definition. The multiplicity of an eigenvalue λ_{i}, also called the algebraic multiplicity of λ_{i}, is the number μ_{i} in (1), i.e. the multiplicity of the root λ_{i} of the characteristic polynomial.

The sum of the multiplicities of the eigenvalues of an $n \times n$ matrix A is equal to n :

$$
\mu_{1}+\cdots+\mu_{s}=n
$$

. It follows that if A has n distinct eigenvalues (i.e. $s=n$) then $\mu_{1}=\cdots=\mu_{s}=1$. If A has less than n eigenvalues then the multiplicity of at least one of the eigenvalues is ≥ 2.

Example. For a 2×2 matrix A one of the following holds:
a. A has two eigenvalues, each of algebraic multiplicity 1
b. A has one eigenvalue of algebraic multiplicity 2 .

Example. For a 3×3 matrix A one of the following holds:
a. A has three eigenvalues, each of algebraic multiplicity 1
b. A has two eigenvalues, one of algebraic multiplicity 1 , the other of algebraic multiplicity 2
c. A has one eigenvalue of algebraic multiplicity 3 .

The terminology "algebraic multiplicity" suggests that there is another, "geometric multiplicity".

Definition. The geometric multiplicity of an eigenvalue λ_{i} of an $n \times n$ matrix A is the number

$$
n-\operatorname{rank}\left(A-\lambda_{i} I\right)
$$

also called the corank of the matrix $A-\lambda_{i} I$.
Since $\operatorname{det}\left(A-\lambda_{i} I\right)=0$ then $\operatorname{rank}\left(A-\lambda_{i} I\right)<n$ and consequently the geometric multiplicity of any eigenvalue is an integer ≥ 1. Since the minimal possible value for the rank of any $n \times n$ matrix A is 0 (the rank is equal to zero if and only if $A=0$), the geometric multiplicity of any eigenvalue of an $n \times n$ matrix does not exceed n.

Is any integer from 1 to n realizable? More precisely, fix an integer $q \in\{1, \ldots, n\}$. Can we construct an $n \times n$ matrix such that one of its eigenvalue has geometric multiplicity q ? The answer is yes. Nevertheless, if we fix the algebraic multiplicity the answer is no. Namely, the following theorem holds.

Theorem 2. The geometric multiplicity of any eigenvalue of any $n \times$ n matrix does not exceed the algebraic multiplicity of this eigenvalue.

Example. Let A be a 2×2 matrix with only one eigenvalue λ_{1}. Then the algebraic multiplicity of λ_{1} is equal to 2 . The geometric multiplicity of λ_{1} is either 1 or 2 . It is equal to 2 if and only if

$$
\operatorname{rank}\left(A-\lambda_{1} I\right)=0 \Leftrightarrow A-\lambda_{1} I=0 \Leftrightarrow A=\lambda_{1} I \Leftrightarrow A=\left(\begin{array}{cc}
\lambda_{1} & 0 \tag{2}\\
0 & \lambda_{1}
\end{array}\right) .
$$

How to construct a 2×2 matrix with the only eigenvalue of geometric multiplicity 1? It is easy. One should use the following theorem.

Theorem 3. If $\lambda_{1}, \ldots, \lambda_{s}$ are all the eigenvalues of an $n \times n$ matrix A, with algebraic multiplicities μ_{1}, \ldots, μ_{s} then

$$
\begin{aligned}
\operatorname{trace} A & =\mu_{1} \lambda_{1}+\cdots+\mu_{s} \lambda_{s} \quad(\text { the "sum with multiplicities") } \\
\operatorname{det} A & =\lambda_{1}^{\mu_{1}} \cdots \cdot \lambda_{s}^{\mu_{s}} \quad \text { (the "product with multiplicities") }
\end{aligned}
$$

Recall that the couple (trace, det) defines uniquely the eigenvalues of any 2×2 matrix (but not a $n \times n$ matrix with $n \geq 3$). Therefore one has the following

Corollary. A 2×2 matrix A has only one eigenvalue λ_{1} if and only if $\operatorname{trace} A=2 \lambda_{1}$ and $\operatorname{det} A=\lambda_{1}^{2}$. If this is so, the geometric multiplicity of λ_{1} is equal to 1 provided that A is not diagonal (i.e. not of form (2)). If A has form (2) then the geometric multiplicity of λ_{1} is equal to 2 .

Example. To construct a 2×2 matrix with the only eigenvalue 3 of geometric multiplicity 1 take any non-diagonal matrix with trace 6 and determinant 9 , for example $\left(\begin{array}{cc}2 & 1 \\ -1 & 4\end{array}\right)$.

Example Let us find the algebraic and geometric multiplicities of the matrix

$$
\left(\begin{array}{lll}
a & b & c \\
0 & d & e \\
0 & 0 & 7
\end{array}\right)
$$

The characteristic polynomial is $P(\lambda)=(\lambda-a)(\lambda-d)(\lambda-7)$. There are the following cases:

Case 1. $a \neq d, a \neq 7, d \neq 7$. In these case we have 3 eigenvalues $a, d, 7$ and we know (without computing) that each of them has algebraic multiplicity 1 and geometric multiplicity 1.

Case 2. $\quad a \neq 7, d=7$, i.e. the matrix has the form $\left(\begin{array}{lll}a & b & c \\ 0 & 7 & e \\ 0 & 0 & 7\end{array}\right)$. In this case we have two eigenvalues: a and 7. The eigenvalue a has algebraic multiplicity 1 and consequently the geometric multiplicity 1. The eigenvalue 7 has algebraic multiplicity 2 and consequently its geometric multiplicity is either 1 or 2 . To see when it is 1 and when it is 2 one has to compute the rank of the matrix

$$
\left(\begin{array}{ccc}
a & b & c \\
0 & 7 & e \\
0 & 0 & 7
\end{array}\right)-7 I=\left(\begin{array}{ccc}
a-7 & b & c \\
0 & 0 & e \\
0 & 0 & 0
\end{array}\right)
$$

Since $a \neq 7$, the rank is 2 if $e \neq 0$ and 1 if $e=0$. Therefore the geometric multiplicity of the eigenvalue 7 is equal to 1 if $e \neq 0$ and to 2 if $e=0$.

Case 3. $a=7, d \neq 7$ i.e. the matrix has the form $\left(\begin{array}{lll}7 & b & c \\ 0 & d & e \\ 0 & 0 & 7\end{array}\right)$.
In this case we have two eigenvalues: d and 7 . The eigenvalue d has algebraic multiplicity 1 and consequently the geometric multiplicity 1. The eigenvalue 7 has algebraic multiplicity 2 and consequently its geometric multiplicity is either 1 or 2 . To see when it is 1 and when it is 2 one has to compute the rank of the matrix

$$
\left(\begin{array}{ccc}
7 & b & c \\
0 & d & e \\
0 & 0 & 7
\end{array}\right)-7 I=\left(\begin{array}{ccc}
0 & b & c \\
0 & d-7 & e \\
0 & 0 & 0
\end{array}\right)
$$

The rank depends on the number $r=b e-c(d-7)$, whether it is equal to 0 or not. If $r \neq 0$ then the rank is equal to 2 and consequently the geometric multiplicity of the eigenvalues 7 is equal to 1 . If $r=0$ then the rank is equal to 1 and consequently the geometric multiplicity of the eigenvalues 7 is equal to 2 .

Case 4. $a=d \neq 7$, i.e. the matrix has the form $\left(\begin{array}{lll}a & b & c \\ 0 & a & e \\ 0 & 0 & 7\end{array}\right)$. In this case we have two eigenvalues: a and 7 . The eigenvalue 7 has algebraic multiplicity 1 and consequently the geometric multiplicity 1. The eigenvalue a has algebraic multiplicity 2 and consequently its geometric multiplicity is either 1 or 2 . To see when it is 1 and when it is 2 one has to compute the rank of the matrix

$$
\left(\begin{array}{ccc}
a & b & c \\
0 & a & e \\
0 & 0 & 7
\end{array}\right)-a I=\left(\begin{array}{ccc}
0 & b & c \\
0 & 0 & e \\
0 & 0 & 7-a
\end{array}\right)
$$

It depends on the number b : if $b \neq 0$ then the rank is 2 and consequently the geometric multiplicity of the eigenvalues a is equal to 1 . If $b=0$ then the rank is 1 and consequently the geometric multiplicity of the eigenvalues a is equal to 2 .

Case 5 (the last possibility). $a=d=7$, i.e. the matrix has the form $\left(\begin{array}{lll}7 & b & c \\ 0 & 7 & e \\ 0 & 0 & 7\end{array}\right)$. In this case there is only one eigenvalue 7. Its algebraic multiplicity equals 3 and consequently its geometric multiplicity is either 1 or 2 or 3 . To see when it is 1 , when 2 , and when 3 , one has
to compute the rank of the matrix

$$
\left(\begin{array}{ccc}
7 & b & c \\
0 & 7 & e \\
0 & 0 & 7
\end{array}\right)-7 I=\left(\begin{array}{ccc}
0 & b & c \\
0 & 0 & e \\
0 & 0 & 0
\end{array}\right)
$$

If $e \neq 0$ and $b \neq 0$ then the rank equals 2 and consequently the geometric multiplicity of the eigenvalue 7 is 1 .
If $e \neq 0$ and $b=0$ then the rank equals 1 and consequently the geometric multiplicity of the eigenvalue 7 is 2 .
If $e \neq 0$ and at leat one of the numbers b, c is different from 0 then the rank equals 1 and consequently the geometric multiplicity of the eigenvalue 7 is 2 .
finally, if $e=b=c=0$ then the rank equals 0 and consequently the geometric multiplicity of the eigenvalue 7 is 3 .

Theorem 4. Let A be an $n \times n$ and let λ_{i} be an eigenvalue of algebraic multiplicity 2 .

1. If the geometric multiplicity of λ_{i} is 1 then there exist a couple of vectors $v_{i} \neq 0, v_{i}^{\prime} \neq 0$ such that

$$
A v_{i}=\lambda_{i} v_{1}, \quad A v_{i}^{\prime}=\lambda_{i} v_{i}^{\prime}+v_{i}
$$

Any vectors $v_{i} m v_{i}^{\prime}$ satisfying these conditions are linearly independent.
Here v_{i} is an eigenvector corresponding to λ_{i} and v_{i}^{\prime} can be called a vector associated with v_{i}.
2. If the geometric multiplicity of λ_{i} is 2 then there exists two linearly independent eigenvectors $v_{i}^{(1)}, v_{i}^{(2)}$ corresponding to λ_{i}.

The role of the associated eigenvector v_{i}^{\prime} for solving the system $X^{\prime}=$ $A X$ is as follows.

Theorem 5. Let A be an $n \times n$ and let λ_{i} be an eigenvalue of algebraic multiplicity 2 and geometric multiplicity 1 . Let v_{i} be an eigenvector corresponding to λ_{i}. The, as we know, the vector function $X(t)=e^{\lambda_{i} t} v_{i}$ is a solution of the system $X^{\prime}=A X$. Another, linearly independent solution is

$$
X(t)=e^{\lambda_{i} t}\left(t v_{i}+v_{i}^{\prime}\right),
$$

where v_{i}^{\prime} is a vector associated with the eigenvector v_{i}.
In view of Theorems 4 and 5 we define one solution associated with an eigenvalue of algebraic multiplicity 1 and two solutions associated with an eigenvalue of multiplicity 2 as follows:

Definition 6.

1. A solution of the system $X^{\prime}=A X$ associated with eigenvalue λ_{i} of algebraic multiplicity 1 is $e^{\lambda_{i} t} v_{i}$ where v_{i} is an eigenvector corresponding to λ_{i}.
2. A couple of solutions of the system $X^{\prime}=A X$ associated with eigenvalue λ_{i} of algebraic multiplicity 2 and geometric multiplicity 1 is the couple

$$
e^{\lambda_{i} t} v_{i}, \quad e^{\lambda_{i} t}\left(t v_{i}+v_{i}^{\prime}\right)
$$

where v_{i}^{\prime} is a vector associated with the eigenvector v_{i}. See the first statement of Theorem 4.
3. A couple of solutions of the system $X^{\prime}=A X$ associated with eigenvalue λ_{i} of algebraic multiplicity 2 and geometric multiplicity 2 is the couple

$$
e^{\lambda_{i} t} v_{i}^{(1)}, \quad e^{\lambda_{i} t} v_{i}^{(2)}
$$

where $v_{i}^{(1)}$ and $v_{i}^{(2)}$ are linearly independent vectors corresponding to λ_{i}. See the second statement of Theorem 4.

Theorem 7. Let A be an $n \times n$ matrix such that each of its eigenvalues has algebraic multiplicity 1 or 2 . Collect the solutions of the system $X^{\prime}=A X$ associated with all the eigenvalues (see Definition 6). We obtain n solutions. They are linearly independent and consequently these n solutions is a basis of the vector space of all solutions.

Theorem 7 allows to solve any system $X^{\prime}=A X$ where $n \times n$ matrix A has eigenvalues of algebraic multiplicities ≤ 2.

Example. Let

$$
A=\left(\begin{array}{lll}
4 & 1 & 2 \\
0 & 7 & a \\
0 & 0 & 7
\end{array}\right)
$$

Let us find abasis of the space of all solutions of the system $X^{\prime}=A X$.
The matrix A has eigenvalue 4 of algebraic multiplicity 1 and the eigenvalue 7 of algebraic multiplicity 2 . Compute the eigenvector corresponding to the eigenvalue 4 : $\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$. Therefore the solution corresponding to the eigenvalue 4 is $e^{4 t}\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$.

The geometric multiplicity of the eigenvalue 7 is 1 if $a \neq 0$ and is 2 if $a=0$. Therefore we must consider the following two cases.

The case $a \neq 0$. In this case the geometric multiplicity of the eigenvalue 7 is 1 and we must compute an eigenvector v and an associated vector v^{\prime}. The eigenvector v is a solution of the system

$$
\left(\begin{array}{ccc}
-3 & 1 & 2 \\
0 & 0 & a \\
0 & 0 & 0
\end{array}\right) \cdot v=0
$$

and we can take $v=\left(\begin{array}{l}1 \\ 3 \\ 0\end{array}\right)$. The associated eigenvector v^{\prime} is a solution of the system

$$
\left(\begin{array}{ccc}
-3 & 1 & 2 \\
0 & 0 & a \\
0 & 0 & 0
\end{array}\right) \cdot v^{\prime}=v=\left(\begin{array}{l}
1 \\
3 \\
0
\end{array}\right)
$$

and we can take for example $v^{\prime}=\left(\begin{array}{c}2 / a \\ 1 \\ 3 / a\end{array}\right)$. We obtain the following couple of solutions corresponding to the eigenvalue 7: $\quad e^{7 t}\left(\begin{array}{l}1 \\ 3 \\ 0\end{array}\right)$ and $e^{7 t}\left(t \cdot\left(\begin{array}{l}1 \\ 3 \\ 0\end{array}\right)+\left(\begin{array}{c}2 / a \\ 1 \\ 3 / a\end{array}\right)\right)$. We obtain the following basis of the space of all solutions:

$$
e^{4 t}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \quad e^{7 t}\left(\begin{array}{l}
1 \\
3 \\
0
\end{array}\right), \quad e^{7 t}\left(\begin{array}{c}
2 / a+t \\
1+3 t \\
3 / a
\end{array}\right)
$$

The case $\mathbf{a}=\mathbf{0}$. In this case the geometric multiplicity of the eigenvalue 7 is 2 and there are two linearly independent eigenvectors corresponding to this eigenvalue. They are solutions of the system

$$
\left(\begin{array}{ccc}
-3 & 1 & 2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \cdot v=0
$$

and we can take for example

$$
v^{(1)}=\left(\begin{array}{l}
1 \\
3 \\
0
\end{array}\right), \quad v^{(2)}=\left(\begin{array}{l}
2 \\
0 \\
3
\end{array}\right) .
$$

We obtain a basis of the space of all solutions:

$$
e^{4 t}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \quad e^{7 t}\left(\begin{array}{l}
1 \\
3 \\
0
\end{array}\right), \quad e^{7 t}\left(\begin{array}{l}
2 \\
0 \\
3
\end{array}\right)
$$

