## Math 106A. Fall 2008. M. Zhitomirskii

## Exam 1. October 22, 2008

11 problems, each requires one to four minutes if you chose a good way to solve. Show all your work. Problems 1-3 are warming up. Problems 7-10 are more difficult than problems 4-6. Problem 11 is a bonus problem. No tricks are required, only the methods and the theorems we did in the class, and the simplest linear algebra.

Each problem solved by 10:50 am: 10 points. Each problem solved after 10:50 am and by Friday, Oct 24, 9:30 am : 3 points provided you explain me your solution, with all details.
The max grade is 110 points (perfect solutions of problems 1-10 and the bonus problem 11 by 10:50 am).
The test in available in my homepage. Good luck!
Name (Last, First)
Grade $\longrightarrow$

Problem 1: - (max 10 pts$)$
Problem 2: $\quad$ (max 10 pts$)$
Problem 3: - (max 10 pts$)$
Problem 4: - (max 10 pts$)$
Problem 5: $\quad$ (max 10 pts$)$
Problem 6: - (max 10 pts$)$
Problem 7: $\quad$ (max 10 pts$)$
Problem 8: - (max 10 pts$)$
Problem 9: - (max 10 pts$)$
Problem 10: - (max 10 pts$)$
Problem 11: - (max 10 pts)

1. Find an eigenvector of the matrix $\left(\begin{array}{ll}3 & 5 \\ 0 & 2\end{array}\right)$ which is not proportional to $\binom{1}{0}$.
2. Find an eigenvector of the matrix $\left(\begin{array}{lll}3 & 0 & 0 \\ 1 & 2 & 1 \\ 1 & 1 & 1\end{array}\right)$ corresponding to the eigenvalue $\lambda=3$.
3. Find $n$ and an $n \times n$ matrix $A$ such that the system $y_{1}^{\prime \prime}=y_{2}, y_{2}^{\prime \prime}=y_{1}$ can be transferred to the first order system $X^{\prime}=A X$.
4. Let $\binom{\sin t}{\cos t}$ be the solution of the system $X^{\prime}=A X$, where $A$ is a certain $2 \times 2$ matrix. Note that this solution satisfies the initial condition $X(0)=\binom{0}{1}$. Find the solution of the same system satisfying the initial condition $X(\pi)=\binom{0}{1}$.
5. Let $A$ be a $3 \times 3$ matrix with eigenvalues

$$
\lambda_{1}=1, \quad \lambda_{2}=2, \quad \lambda_{3}=-3
$$

and with corresponding eigenvectors

$$
v_{1}=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right), \quad v_{2}=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right), \quad v_{3}=\left(\begin{array}{l}
3 \\
0 \\
1
\end{array}\right)
$$

Find the solution $X(t)$ of the system $X^{\prime}=A X$ satisfying the initial condition $X(0)=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$.
6. Let $A$ be a $4 \times 4$ matrix with eigenvalues

$$
\lambda_{1}=1, \quad \lambda_{2}=2, \quad \lambda_{3}=-1, \quad \lambda_{4}=-2
$$

and corresponding eigenvectors

$$
v_{1}=\left(\begin{array}{c}
11 \\
14 \\
-15 \\
-131
\end{array}\right), \quad v_{2}=\left(\begin{array}{c}
28 \\
24 \\
13 \\
98
\end{array}\right), \quad v_{3}=\left(\begin{array}{l}
1 \\
2 \\
0 \\
3
\end{array}\right), \quad v_{4}=\left(\begin{array}{l}
2 \\
5 \\
1 \\
4
\end{array}\right) .
$$

Let $X(t)$ be the solution $X(t)$ of the system $X^{\prime}=A X$ satisfying the initial condition $X(0)=\left(\begin{array}{l}a \\ b \\ 5 \\ 8\end{array}\right)$. Under which (necessary and sufficient) condition on $a, b$ one has $X(t) \rightarrow 0$ as $t \rightarrow \infty$ ?
7. Let $A$ be a $2 \times 2$ matrix with eigenvalues $\lambda_{1}=1, \lambda_{2}=-1$ and corresponding eigenvectors $v_{1}=\binom{1}{3}, v_{2}=\binom{-2}{5}$, and let $X(t)=\binom{x_{1}(t)}{x_{2}(t)}$ be the solution of the system $X^{\prime}=A X$ satisfying the initial condition $X(0)=\binom{-1}{a}$. Under which (necessary and sufficient) condition on $a$ there exists time $T \in(-\infty, \infty)$ such that $x_{2}(T)=0$ ?
8. Let $A$ be a $2 \times 2$ matrix with eigenvalues $\lambda_{1}=-1, \lambda_{2}=-3$ and corresponding eigenvectors $v_{1}=\binom{1}{3}, v_{2}=\binom{-2}{5}$, and let $X(t)=\binom{x_{1}(t)}{x_{2}(t)}$ be the solution of the system $X^{\prime}=A X$ satisfying the initial condition $X(0)=\binom{a}{1}$. Under which (necessary and sufficient) condition on $a$ one has $x_{2}(t)<0$ for sufficiently big $t$ (i.e. there exists $T$ such that $x_{2}(t)<0$ as $\left.t>T\right)$ ?
9. Give an example of a $2 \times 2$ matrix $A$ such that the system $X^{\prime}=A X$ has the phase portrait
10. There exists a number $b$ such that the phase portrait of the system $X^{\prime}=\left(\begin{array}{ll}2 & a \\ b & 5\end{array}\right) X$ is a saddle for $a>4$ and a source or a sink for $a<4$ or, vice a versa, a saddle for $a<4$ and a source or a sink for $a>4$. Find this number $b$ and determine the type of the phase portrait (saddle, sink, source) for $a<4$ and for $a>4$. (Hint: using the fact that the sum of the eigenvalues is the trace and their product is the determinant saves at least 5 min and reduces to zero the probability of computational error).
11. For the system $x_{1}^{\prime}=x_{1}^{2}-x_{2}^{2}, x_{2}^{\prime}=x_{2}^{2}$, find two straight line phase curves which do NOT belong to the $x_{1}$-axes.

