Tirgul: Complex roots of polynomials with real coefficients

1. Find all complex roots of the polynomial

$$
P(z)=\left(z^{4}-16\right)^{3} \cdot\left(z^{3}-1\right)^{4} .
$$

Find the multiplicity of each of the roots.
2. It is known that the polynomial $P(z)=z^{4}+a_{3} z^{3}+a_{2} z^{2}+a_{1} z+a_{0}$ with real coefficients $a_{0}, a_{1}, a_{2}, a_{3}$ has a real root $z=5$ and there are no other real roots. It is also known that $P(z)$ has a root $z=i$. Find $a_{0}, a_{1}, a_{2}, a_{3}$.
3. Find real positive number a such that the polynomial

$$
P(z)=a z^{3}-z+1
$$

has less than 3 complex roots.
4. Find $a_{1}, a_{2}, a_{3} \in \mathbf{R}$ such that the polynomial

$$
P(z)=z^{4}+a_{3} z^{3}+a_{2} z^{2}+a_{1} z+1
$$

has a root $z=-1$ of multiplicity 2 .
5. It is known that the polynomial

$$
P(z)=z^{5}+a_{4} z^{4}+a_{3} z^{3}+a_{2} z^{2}+a_{1} z+1
$$

with real coefficients $a_{1}, a_{2}, a_{3}, a_{4}$ has a root $z=1+i$ of multiplicity 2 . Find a real root of $P(z)$. Find a_{4}.

