Problem 1. Find the area of the region D in the (x, y)-plane which is obtained from the rectangle $[0,1] \times[0,1]$ in the (u, v)-plane by the transformation $x=u^{2}+u+v, y=3 v$.
Problem 2. Find the volume of the region D in the (x, y, z)-space which is obtained from the unit ball $W:\left\{u^{2}+v^{2}+w^{2} \leq 1\right\}$ in the (u, v, w)-space by the transformation
$x=u+v, y=u-v, z=3 u-4 v+5 w$
(you can use the fact that the volume of W is equal to $4 \pi / 3$).
Problem 3. Give an example of a function $g(x, y)$ such that

$$
\int_{c}\left(2 x^{3} y+x^{2} y^{2}\right) d x+g(x, y) d y=0
$$

for any closed path c.
Problem 4. Give an example of a function $g(x, y)$ such that the flux of the vector field $\mathbf{F}=\left(2 x^{3} y+x^{2} y^{2}\right) \mathbf{i}+g(x, y) \mathbf{j}$ out of any closed curve is equal to 0 .
Problem 5. Give an example of two functions $h_{1}(x, y, z), h_{2}(x, y, z)$ such that the integral of the vector field $\mathbf{F}=x y z \mathbf{i}+h_{1}(x, y, z) \mathbf{j}+$ $h_{2}(x, y, z) \mathbf{k}$ over any closed path is equal to 0 .
Problem 6. Find a function $f(\theta)$ such that the length of the closed curve $C: x^{2}+x y+4 y^{2}=0$ is equal to $\int_{0}^{2 \pi} f(\theta) d \theta$. (Hint: C is an ellipse, it can be transformed to a circle by a linear transformation). Find the area bounded by C (the answer must be a number).
Problem 7. Compute the integral of the vector field $\mathbf{F}=x y \mathbf{i}+y z \mathbf{i}+\mathbf{k}$ over the circumference of the traingle with vertices $(0,0,0),(2,1,3)$, and $(2,4,3)$.
Problem 8. Use Green's theorem to compute $\iint_{D} x^{2} d S$, where D is the region between by the circle $x^{2}+y^{2}=100$ and the ellipse $2 x^{2}+4 y^{2}=1$.

Problem 9. The surface S is determined by the conditions $x^{2}+y^{2} \leq 4, z=x y$. Find the unit normal vector to S at the point $(\sqrt{2} / 2, \sqrt{2} / 2,1 / 2)$. Set up an iterated integral for the area of S.
Problem 10. Use Gauss' theorem to find the flux of the vector field $\mathbf{F}=x^{2} \mathbf{i}+x z \mathbf{j}+y^{2} z \mathbf{k}$ out of the
(a) surface of the cube $[0,1] \times[0,1] \times[0,1]$
(b) the sphere $x^{2}+y^{2}+z^{2}=1$.
(c) the ellipsoid $x^{2}+2 y^{2}+3 z^{2}=1$.

