
1. Complex numbers

1.1. Complex plane, Rez, Imz, |z|, z̄, Argz.

1.2 Trigonometric form.

1.3 Elementary operations, |z1z2|, |zn|, Argzn.

1.4 Solving zn = w.

2. Polynomials

2.1 Real and complex roots of a real degree n polynomial.

2.2 Multiplicities of roots. Finding the multiplicity of a root by
factorization and using derivatives.

2.3 If z is a root then z̄ is also a root of the same multiplicity.

2.4 The sum of multiplicities is n (main theorem of algebra).

2.5. Viete’s theorem: the sum and the product of the roots of a
polynomial (repeated according to their multiplicities)

3. Systems of linear equations. Rank of a matrix

3.1 Examples with unique/infinitely many/no solutions.

3.2 Matrices. The space Rn (= vectors=columns=n × 1 matrices).
Multiplication of a matrix by a vector, writing a system of linear equa-
tions in the form Ax = b.

3.3. Tsura medureget, dirug.

3.4 One of the definitions of rank: the number of nonzero rows in
tsura medureget. Theorem: tsura medureget is not unique, but rank
is well-defined. If A is an m× n matrix then rankA ≤ min(m,n).

3.5. Solution of an arbitrary system Ax = b where A is an m ×
n matrix and b ∈ Rm. Distinguishing the cases of (a) unique (b)
infinitely many (c) no solutions. The number of parameters in the set
of all solutions. Which conclusions can be made if we know rankA
only? (the cases rankA < m, rankA = m, rankA > m).

3.6. The set of all solutions of the homogeneous system Ax = 0 in
terms of rankA.

3.7. Relation between solution of linear systems Ax = b and Ax = 0.
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4. Operations on matrices. Inverse matrix. Determinants

4.1. A + B, AB.

4.2. AB 6= BA, some cases when AB = BA. A(BC) = (AB)C.

4.3. The matrix I. If A and B are square matrices and AB = I then
BA = I. Definition of invertible matrix.

Theorem: an n× n matrix A is invertible if and only if rankA = n.

Solving AC = B with respect to C if A is a square invertible matrix.

Finding A−1 by elementary transformations on rows (making the
same operations on the rows of I).

4.3. Determinants and the ways of their calculations.

Theorem: for an n× n matrix A the following are equivalent:

(a) detA 6= 0;

(b) A is invertible;

(c) rankA = n;

(d) the system Ax = b has a solution (unique) for any b ∈ Rn.

4.4. Solving Ax = b with a square matrix A via determinants.

4.5. Finding the inverse matrix A−1 via determinants.

4.6. Symmetric, anti-symmetric, triangular matrices. detAt = detA.

5. Subspaces of Rn. Linear independence, basis, dimension (all in Rn)

5.1. Lines through the origin of R2. Two ways of presenting them:

(a) by one equation

(b) the set of points tv, t ∈ R, v is a certain vector in R2.

Lines through the origin of R3. Two ways of presenting them:

(a) by two equations

(b) the set of points tv, t ∈ R, v is a certain vector in R3.

Planes through the origin of R3. Two ways of presenting them:

(a) by one equation

(b) the set of points t1v1 + t2v2, t1, t2 ∈ R, v1 and v2 are certain
vectors in R3.

5.2. Definition of linear independent vectors in R2, R3 and Rn. Def-
inition of span(v1, ..., vk) of k vectors in R2, R3 and Rn.

Theorem: m < n vectors in Rn never span Rn, and m > n vectors
are always linearly dependent.
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5.3. Definition of basis of Rn. Standard basis. Examples of non-
standard bases.

5.4. Definition of a subspace V ⊂ Rn. Several equivalent definitions
of a basis and dim of V .

Theorem: if v1, ..., vk ∈ V and k < dimV then (a) v1, ..., vk do not
span V . If k > dimV then (b) v1, ..., vk are linearly dependent. If
k = dimV then (a) holds if and only if (b) holds.

5.5. Subspaces V ⊂ Rn given by

(a) a system Ax = 0 where A is an m× n matrix

(b) V = span(v1, ..., vk) where v1, ..., vk ∈ Rn.

Finding dimV and an example of a basis of V for each of these cases.
From (a) to (b) and from (b) to (a).

5.6. Solving the following problems:

(a) given a vector v ∈ Rn and vectors v1, ..., vk ∈ Rn determine
whether v ∈ span(v1, ..., vk).

(b) given linearly independent vectors v1, ..., vk find vectors vk+1, ..., vn

such that v1, ..., vn is a basis.

5.7. Two more (equivalent) definitions of a rank of an m×n matrix:

(a) the dim of the subspace of Rn spanned by rows

(b) the dim of the subspace of Rm spanned by columns.

6. Vector spaces

6.1. Definition of a vector space. Main examples for this course: Rn,
the space Mat(m,n) of m×n matrices, the space Pm[t] of polynomials
of degree ≤ m.

6.2. Subspaces of a vector space. Examples of subspaces of Mat(m,n)
and Pm[t].

6.3. Linear dependence, span, basis, dimension. Definitions and
main theorems: generalization of topic 5.

6.4. From an n-dimensional space V to Rn. Coordinate vector.

6.5. Finding dimension and an example of a basis of certain sub-
spaces of Mat(m, n) and Pm[t].
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7. Linear transformations

7.1. Definition of a linear transformation T from a space V to a
space W . Examples of linear transformations:

(a) from Rp to Rm, Mat(m,n), Pm[t]

(b) from Mat(m,n) to Rp, Mat(m̃, ñ), Pk[t]

(c) from Pk[t] to Rp, Mat(m,n).

7.2. Representative matrix [T ]e of a linear transformation T in a
standard basis e. Finding T (v) by [T (v)]e = [T ]e[v]e, where [v]e is the
vector of coordinates in the standard basis e.

7.3. Composition of linear transformations. Representative matrix
of composition = product of representative matrices.

7.4. Kernel and image of a linear transformation, finding them via a
matrix of the transformation in standard basis.

7.5. 1-1 and onto linear transformations.

1-1 ⇐⇒ ker = {0}.
Theorem: If T : V → W , dimV = n, dimW = m, then:

(a) if n > m then T is not 1-1.

(b) If n < m then T is not onto.

(c) If n = m then T is 1-1 if and only if it is onto.

8. Linear operators

8.1. Definition: a linear operator is a linear transformation from a
vector space V to the same vector space V .

8.2. Examples when the representative matrix of T in the standard
basis is not diagonal, and in certain non-standard basis it is diagonal
(as a motivation for nonstandard basis). Definition: a basis is ”good”
if the matrix of T in this basis is diagonal. Definition: if a ”good” basis
exists then the operator T is called diagonalizable, and its matrix (in
any basis) is called diagonalizable.

8.3. Definition of eigenvalues, eigenspaces, and eigenvectors of a lin-
ear operator T : V → V . A number λ is an eigenvalue if T (v) = λv for
some nonzero vector v. The set of all vectors v satisfying this relation
is a subspace of the space V . It is called eigenspace corresponding to λ.
Nonzero vectors of this eigenspace are called eigenvectors correspond-
ing to λ.

8.4. Definition of eigenvalues, eigenspaces, and eigenvectors of a
square n×n matrix A. A number λ is an eigenvalue of A if det(A−λI) =
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0. The set of all solutions x of the system (A− λI)x = 0 is a subspace
of Rn called the eigenspace corresponding to λ. Nonzero vectors of this
eigenspace are called eigenvectors corresponding to λ.

8.5. Relation between the eigenvalues and eigenvectors of operators
and matrices.

Let V be a vector space, dimV = n, T : V → V is a linear operator,
and let A be the matrix of T in ANY basis, say the standard basis e.
Then:

(a) λ is an eigenvalue of T if and only if it is an eigenvalue of A

(b) v is an eigenvector of T if and only if its coordinate vector [v]e
is an eigenvector of A

8.6. Finding eigenvalues. Characteristic polynomial and algebraic
multiplicity of eigenvalues. complex eigenvalues. The sum and the
product of the eigenvalues (repeated according to algebraic multiplici-
ties).

8.7. Geometric multiplicity of eigenvalues. Theorem about diag-
onalizability (a matrix is diagonalizable over R if and only if all its
eigenvalues are real and the geometric multiplicity of each of them co-
incides with the algebraic multiplicity). Particular case: the algebraic
multiplicity is 1 for each of the eigenvalues.

8.8. Finding a ”good basis” (if exists) for a linear operator T : V →
V , i.e. a basis e of V in which the representative matrix [T ]e is diagonal.


