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I Local homogeneous subsets of TRn and TCn

Σ = {Σx ⊂ TxMn}x∈Mn , Mn : analytic manifold

I Def. Σ is homogeneous if for any p1, p2 ∈ Mn there exists a
local analytic diffeo Φ : (Mn, p1)→ (Mn, p2) such that

Φ∗,xΣx = ΣΦ(x), x close to p1.

I A local homogeneous subset TRn is the germ at 0 ∈ Rn

of a homogeneous subset of TU, U is a nbhd of 0 ∈ Rn.

Germ wrt to x ∈ Rn, not wrt to a tangent vector.

I A local homogeneous subset TCn

(holomorphic tangent bundle):

replace Rn by Cn and local diffeos by local biholomorphisms.
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I Riemannian metric on R2 = elliptic structure in TR2

I Hyperbolic structure in TR2

I a2 and b2 (Abelian and non-Abelian 2-dim Lie algebras)

I Claim. There is a natural way to identify:

Local homogeneous
subset of TRn up to diffeos

Subset of
an n-dim Lie algebra
up to automorphisms

Local homogeneous
Riemannian metric on R2

with zero, resp. negative curvature
ellipse in a2, resp. b2

Local homogeneous
hyperbolic structure in TR2

with zero, positive or
negative curvature

hyperbola in b2

if zero curvature also
hyperbola in a2
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I From an ellipse E , resp. hyperbola H in g = a2, b2

to elliptic, resp. hyperbolic structure in TR2

I Let G be a Lie group with the Lie algebra g.
Push forward E , resp. H by the flows
of left-invariant vector fields to a nbhd of id ∈ G .

I All ellipses, resp. hyperbolas in a2 are automorphic.
If g = a2 we obtain homogeneous “flat” elliptic or
hyperbolic structure, “flat” = zero curvature.

I The classification of ellipses and hyperbolas in b2

and the corresponding homogeneous elliptic
and hyperbolic structures are as follows:
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Ellipses and hyperbolas
in b2 : [e1, e2] = e2

up to automorphisms

Local homogeneous
subsets ofTR2

up to diffeomorphisms

Ellipse x2
1 + θx2

2 = 1
θ > 0

Riemannian metrics
with negative

curvature − θ

Hyperbola x2
1 − θx2

2 = 1
θ > 0

Hyperbolic structure
with negative

curvature − θ

Hyperbola x2
2 − θx2

1 = 1
θ > 0

Hyperbolic structure
with positive

curvature θ

Hyperbola x1x2 = 1
Hyperbolic structure

with zero
curvature



I Take a Lie group G with the Lie algebra g = a2 or g = b2 and
push forward an ellipse or hyperbola in g by the flows of
left-invariant vector fields to a nbhd of id ∈ G .

I Generalization (not modest)

• Replace TR2 by TRn, resp. TCn

TCn: holomorphic tangent bundle

• replace a2 or b2 by any real, resp. complex
n-dim Lie algebra g

• Replace an ellipse or hyperbola by any subset of g.

We obtain a local homogeneous subset of TRn, resp. TCn.

I A local homogeneous subset of TRn, resp. TCn

will be called special if it cannot be obtained in this way,
up to an analytic diffeo, resp. biholomorphism.

Problem. To find all special local homogeneous subsets of
TRn, resp. TCn, if any.
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I Some results (M.Zh, 2012-13)

I 1. In TC2 there are no special local homogeneous subsets.

I 2. In TR2 an example of a special local homogeneous subset
is a Riemannian metrics with positive curvature.

I In some sense it is the only example:
any special local homogeneous subset of TR2 has
symmetry algebra so3(R).

I 3. In TC3 within local homogeneous linear subsets
(plane fields, affine plane fields, line fields, affine line fields)
there are no special ones.

I 4. In TC 4 within local homogeneous linear subsets the only
special one is the most involved class of affine line fields.

The symmetry algebra for this class is ∞-dim.
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I 5. In TR3 and in TC3:

there are special local homogeneous (non-linear) subsets

their symmetry algebra can be explicitly
classified up to diffeos.

In the case TC3 the symmetry algebras of special
local homogeneous subsets are, up to biholomorphisms:

two single symmetry algebras and two 1-parameter families;
all are ∞-dim.

I I do not know an example of a special local homogeneous
subset of TCn with finite-dim symmetry algebra.

Working doubtful conjecture: such example does not exist.
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A local affine line field in TKn, K = R,C
can be defined by two vector field germs A,B
where B shows direction and A is “drift”.
A and B are defined up to B → H1B, A→ A + H2B, H1(0) 6= 0.

Within local homogeneous affine line fields:

the simplest class can be called “flat”, it is defined by:
[A,B](x) ∈ span(B(x)) for any x .

The most involved class is defined by

[B, [A,B]](x) ∈ span {B(x), [A,B](x)},
[A, [A, [A,B]]](0) 6∈ span {B(0), [A,B](0), [A, [A,B]](0)},
[B, [A, [A, [A,B]]]](x) ∈ span {B(x), [A,B](x), [A, [A,B]](x)}
The symmetry algebra is

f (x1) ∂
∂x1

+ f ′(x1) ∂
∂x2

+ex3f ′′(x1) ∂
∂x3

+
(
e2x2f ′′′(x1) + ex2f ′′(x1)

)
∂
∂x4
.

It is isomorphic to the Lie algebra of all vector field germs on K.



I Infinitesimal symmetries
and transitive Lie algebras of vector fields

I Σ is a local subset of TKn, K = R,C.

All vector fields are analytic (K = R) or holomorphic (K = C).

I A vector field germ V at 0 ∈ Kn

is an infinitesimal symmetry of Σ if

Φt
∗Σx = ΣΦ(x), x close to 0 ∈ Kn, t close to 0 ∈ K

I All infinitesimal symmetries of Σ = Lie algebra of vector fields
= symmetry algebra of Σ = sym(Σ).

Thm. Σ is homogeneous if and only if dim (sym(Σ)(0)) = n.

I Def. A Lie algebra L of vector field germs at 0 ∈ Kn is called
transitive if dimL(0) = n.

I Thus the symmetry algebra of any local homogeneous subset
of TKn is transitive. But not any transitive algebra of vector
field germs is the symmetry algebra of some local
homogeneous subset of TKn.
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I Local homogeneous subsets of TKn

and splitting property of transitive algebras

I Any Lie algebra of vector field germs at 0 ∈ Kn has
a very important subalgebra consisting of vector field germs
vanishing at 0. It is called isotropy subalgebra.

I Recall the basic construction of local homogeneous
subsets Σ ⊂ TKn:

————————————————————–
Take an n-dim Lie algebra g, a subset of g, and push this
subset forward to a nbhd of id of G = exp(g) by the flows of
left-invariant vector fields. Bring the obtained local subset of
TG to a local subset Σ ⊂ Kn by a local analytic diffeo
(K = C: biholomorphism) (G , id)→ (Kn, 0).
————————————————————–

I Consider the symmetry algebra sym(Σ) and its isotropy
subalgebra I ⊂ sym(Sigma). The construction implies

sym(Σ) = g + I .
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I Local homogeneous subsets of TKn

and splitting property of transitive algebras

Let L be a transitive Lie algebra
of vector field germs at 0 ∈ Kn.
Let I be its isotropy subalgebra.
Note that I is a subspace of L of codimension n.

Def. I will say that L has the splitting property
if I has a complement in L which is a Lie algebra,
i.e. L = g + I for some n-dim Lie algebra g .

I Recall that a local homogeneous subset of TKn is called
special if it cannot be obtained by the given construction.

Prop. A local homogeneous subset ΣTKn is special
if and only if its symmetry algebra sym(Σ)
does not have the splitting property.
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I Examples of special local homogeneous subsets of TKn

I 1. Local Riemannian metrics (elliptic structure) on R2

with positive curvature.

The symmetry algebra, as an abstract Lie algebra, is so3(R).
The isotropy subalgebra is 1-dimensional. The splitting
property does not hold simply because so3(R) does not
contain any 2-dim subalgebras.

I 2. The mentioned above class of local homogeneous affine
line fields on K4, with the ∞-dim symmetry algebra

f (x1)
∂

∂x1
+f ′(x1)

∂

∂x2
+ex3 f ′′(x1)

∂

∂x3
+
(
e2x2 f ′′′(x1) + ex2 f ′′(x1)

) ∂

∂x4

As an abstract Lie algebra it is isomorphic to the Lie algebra
Vect(1) of all vector field germs on K. The splitting property
does not hold simply because Vect(1) does not contain any
4-dim subalgebras (exercise).
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To go on need

I 1. Which transitive Lie algebras of vector field germs are
symmetry algebras of some local homog. subset of TKn?

I 2. Is it possible to deal with transitive Lie algebras of vector
field germs as with abstract Lie algebras endowed with a
subalgebra (corresponding to the isotropy subalgebra)?

I 2.1 Let (L, I ) and (L̃, Ĩ ) are transitive Lie algebras of vector
field germs on Kn , where I and Ĩ are isotropy sublagebras.

Is it true that L and L̃ are diffeomorphic

(i.e. there exists a local diffeo Φ of Kn such that Φ∗L = L̃)

if and only if (L, I ) and (L̃, Ĩ ) are isomorphic,

i.e. there exists an isomorphism from L to L̃ sending I to Ĩ ?

I 2.2 Under which condition, if any, an abstract Lie algebra L
endowed with a subalgebra I of codimension n can be realized
as a transitive Lie algebra of vector field germs on Kn with the
isotropy subalgebra I ?
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i.e. there exists an isomorphism from L to L̃ sending I to Ĩ ?
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Is it true that L and L̃ are diffeomorphic

(i.e. there exists a local diffeo Φ of Kn such that Φ∗L = L̃)

if and only if (L, I ) and (L̃, Ĩ ) are isomorphic,
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I Transitive Lie algebras of vector field germs
and abstract transitive Lie algebras. Nagano principle

I Prop. The isotropy subalgebra I of a transitive algebra L of
vector field germs does not contain non-trivial ideals of L.

I Def. An abstract transitive Lie algebra is a Lie algebra g

endowed with a subalgebra I (called isotropy subalgebra)
containing no non-trivial ideals of the whole algebra.

Two abstract transitive Lie algebras (g, I ) and (g̃, Ĩ ) are isomorphic

if there exists an isomorphism T : g→ g̃ such that T (I ) = Ĩ .

I Prop. Any finite-dim abstract transitive Lie algebra (g, I ) can
be realized by a transitive Lie algebra of vector field germs on
Kn, where n = codim I .

I Thm (H.J. Sussmann, 1974) Two finite-dim transitive Lie
algebras of vector field germs on Kn are diffeomorphic if and
only if they are isomorphic as abstract transitive Lie algebras.
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Prop. The isotropy subalgebra I of a transitive algebra L of vector
field germs does not contain non-trivial ideals of L.

Proof. Let R ∈ I be an ideal of L. Assume R 6= {0}. Take in R a
vector field V whose Taylor series starts with terms of minimal possible
order d ≥ 1 (here we use analyticity):

R ⊃ V = V (d) + h.o.t., V (d) homogeneous of order d

Since L is transitive, L contains vector fields

ai =
∂

∂xi
+ h.o.t.

Since R is an ideal, [ai ,V ] ∈ R. We have

[ai ,V ] =

[
∂

∂xi
,V (d)

]
+ h.o.t.

If at least one of
[

∂
∂xi
,V (d)

]
is not zero we get contradiction to the

assumption that d is minimal possible. Therefore[
∂

∂xi
,V (d)

]
= 0, i = 1, ..., n.

Since d ≥ 1 it follows V (d) = 0. Contradiction.



Prop. Any finite-dim abstract transitive Lie algebra (g, I ) can be
realized by a transitive Lie algebra of vector field germs on Kn,
where n = codim I .

Proof. Let G be a nbhd of id of a Lie group of g. Factorize G by
the equivalence g1 ∼ g2 if g2 = g1eλ for some λ ∈ I . We obtain an
n-dimensional manifold M. The left-invariant vector fields on G
define vector fields on M. We obtain a Lie algebra L of vector
fields on M.

Let λ ∈ I . It defines a flow on M: g → etλg . We have
id → etλ ∼ id . Therefore the left invariant vector field defined by
vectors in I give, after the factorization, vector field on M which
vanish at id ∈ M. Therefore they belong to the isotropy
subalgebra of L. The fact that the isotropy subalgebra of L
contains nothing else and dimL(id) = n follows from the condition
that I contains no non-trivial ideals of g.



I Example: (so3(C), I ) , dim I = 1
There are two such transitive Lie algebras, up to
isomorphisms, corresponding to singular and non-singular
directions span(b) in so3(C). The singular directions are
defined by: ad(b) is a nilpotent operator.

In the standard basis [e1, e2] = e3, [e2, e3] = e1, [e3, e1] = e2

the singular directions are spanned by vectors
r1e1 + r2e2 + r3e3 where r 2

1 + r 2
2 + r 2

3 = 0.

I Example: (sl2(R), I ) , dim I = 1
There are three such transitive Lie algebras, up to
isomorphisms, corresponding to singular, hyperbolic and
elliptic directions. The singular directions span(b) are defined
as for so3(C), but now they form a cone separating

ad(b) has eigenvalues 0,±1 (up to a factor): hyperbolic
ad(b) has eigenvalues 0,±i (up to a factor): elliptic



I Claim. Any transitive Lie algebra (sl2(R), I )
has the splitting property.

If dim I = 2 it is obvious. If dim I = 1 one has

sl2(R) = b2 + I

I Example:

for sl2 : [a1, a2] = b, [a1, b] = a1, [a2, b] = −a2

and I = span(b)

one has b2 = span(a1 + r1b, a2 + r2b) where r1r2 = 1/2.

I In so3(R), unlike so3(C),
all directions I are equal (automorphic);

they are equally bad because (so3(C), I )
does not have the splitting property:
so3(C) does not have any 2-dim subalgbras.
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Ellipses and hyperbolas

in b2 : [e1, e2] = e2

up to automorphisms

Local homog.

subsets ofTR2

up to diffeos

symm. algebra
is transitive
Lie algebra

Ellipse x2
1 + θx2

2 = 1
θ > 0

Riemannian metric

with negative

curvature − θ

(sl2(R), I )
elliptic 1-dim I

Hyperbola x2
1 − θx2

2 = 1
θ > 0

Hyperbolic struct.

with negative

curvature − θ

(sl2(R), I )
hyperb. 1-dim I

Hyperbola x2
2 − θx2

1 = 1
θ > 0

Hyperbolic struct.

with positive

curvature θ

(sl2(R), I )
hyperb. 1-dim I

Hyperbola x1x2 = 1
Hyperbolic struct.

with zero
curvature

((
R + a2

)
±1
,R
)

[z,x]=x, [z,y]= -y,
[x,y]=0



I Not any transitive Lie algebra
is a symmetry algebra of a local homogeneous subset of TKn

I The table contains transitive Lie algebras (sl2(R), I ) with
hyperbolic and with elliptic, but not singular 1-dim I . Why?

I Claim: if I ∈ sl2(K) is singular,
there is no local homogeneous subset of TK2

with the symmetry algebra (sl2(K), I ).

I Prop. If Σ is a local homogeneous subset of TKn and sym(Σ)
contains a transitive Lie algebra (L, I ) which belongs to a
bigger transitive Lie algebra (L̃, Ĩ ) and the central part of
these two transitive Lie algebras are the same or
geometrically-same then sim(Σ) also contains (L̃, Ĩ ).

I For (sl2(R), I ) with singular I : L̃ =
{

f ′(x2) ∂
∂x1

+ f (x2) ∂
∂x2

}
.
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I Central part of a transitive Lie algebra

Def. The central part of a Lie algebra (L, I ) of vector field
germs at 0 ∈ Kn is the linear approximations of the vector
fields V ∈ I at 0.

These linear approximation are linear vector fields on T0Kn

and form a subalgebra of gln(K).

I The same definition in terms of
abstract transitive Lie algebra (g, I ):

The central part is the factor-algebra I/ ∼
where b1, b2 ∈ I are equivalent if [(b1 − b2), g] ⊆ I .

I If two abstract transitive Lie algebras are isomorphic then
their central parts A1,A2 ⊂ gln(K) are conjugate:
T−1A1T = A2 for some non-singular T ,
which is much stronger then isomorphic.
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I Why (sl2(K), I ) with singular I belongs namely to

f ′(x2) ∂
∂x1

+ f (x2) ∂
∂x2

and why they have the same central part?

I The central part of (sl2(K), I ) with singular I is the vector

field x2
∂
∂x1

on T0K2, defined up to GL(2).

I The key point is that the vector field x2
∂
∂x1

on T0K2 has an

invariant affine line laf ⊂ T0K2, for example ∂
∂x2

+ span( ∂
∂x1

).

I Push forward `af by the flows of sl2. We obtain homogeneous

affine line field Laf in TK2 with a certain transitive Lie
algebra which contains (sl2(K), I ).

I Laf can be described by a differential 1-form α, α(0) 6= 0:
Lx = {v ∈ TxKn : α(x) = 1}. Due to homogeneity either
dα(0) 6= 0 or dα ≡ 0. If dα(0) 6= 0 then the central part of
sym(Laf ) is conjugate to x2

∂
∂x1

.

I All α such that α(0) 6= 0 and dα(0) 6= 0 are locally
diffeomorphic, for example to e α = ex1dx2. The symmetry
algebra of this α, i.e. the vector fields Z such that
LZα = d(Zcα) + Zcdα = 0 is exactly f ′(x1) ∂

∂x1
+ f (x1) ∂

∂x2
.
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on T0K2, defined up to GL(2).

I The key point is that the vector field x2
∂
∂x1

on T0K2 has an

invariant affine line laf ⊂ T0K2, for example ∂
∂x2

+ span( ∂
∂x1

).

I Push forward `af by the flows of sl2. We obtain homogeneous

affine line field Laf in TK2 with a certain transitive Lie
algebra which contains (sl2(K), I ).

I Laf can be described by a differential 1-form α, α(0) 6= 0:
Lx = {v ∈ TxKn : α(x) = 1}. Due to homogeneity either
dα(0) 6= 0 or dα ≡ 0. If dα(0) 6= 0 then the central part of
sym(Laf ) is conjugate to x2

∂
∂x1

.

I All α such that α(0) 6= 0 and dα(0) 6= 0 are locally
diffeomorphic, for example to e α = ex1dx2. The symmetry
algebra of this α, i.e. the vector fields Z such that
LZα = d(Zcα) + Zcdα = 0 is exactly f ′(x1) ∂
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I As mentioned, I know few examples of special local
homogeneous subset of TCn (which is not defined up to
biholomorphisms by a subset of an n-dim complex Lie algebra)
whose symmetry algebra is ∞-dimensional.

I I do not know such examples with a finite-dimensional
complex symmetry algebra because I do not know examples of
complex finite-dim transitive Lie algebras which:

(a) do not have the splitting property AND
(b) are geometrically-maximal = symmetry algebras of some
local homogeneous subset of the tangent bundle.

I Exercise. Give an example of a finite-dimensional complex
transitive Lie algebra which does not have the splitting
property (refusing from (b)). The simplest I know is

span(a1, a2, a3, b), [a2, b] = a1, [a2, a3] = b, all other
brackets are zero, the isotropy subalgebra is span(b).

I But unfortunately (or fortunately?) this transitive Lie algebra
is not the symmetry algebra of any local homogeneous subset
of TC4.
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I Prop. If Σ is a local homogeneous subset of TKn and sym(Σ)
contains a transitive Lie algebra (L, I ) which belongs to a
bigger transitive Lie algebra (L̃, Ĩ ) and the central part of
these two transitive Lie algebras are the same or
geometrically-same then sim(Σ) also contains (L̃, Ĩ ).

I Definition of geometrically-same

Two Lie subalgebras g1, g2 ⊂ gln(K), viewed as
linear vector fields on T0Kn (and therefore defined up to
conjugacy rather then isomorphisms) are geometrically same if
any g1-invariant subset of T0Kn is also g2-invariant.

I For example sln(K) is geometrically the same as gln(K)
since the singular locus of sln(K), defined as the set of points
in T0Kn at which dimsln(K) is less then n, is simply {0}.

I There are many other examples with much more involved
subalgebras of gl(n) defined up to conjugacy.



I Prop. If Σ is a local homogeneous subset of TKn and sym(Σ)
contains a transitive Lie algebra (L, I ) which belongs to a
bigger transitive Lie algebra (L̃, Ĩ ) and the central part of
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I The big problem in terms of transitive Lie algebras

I Def. A transitive Lie algebra is geometrically-maximal if it is
not contained in a bigger transitive Lie algebra with the same
or geometrically same central part.

Prop. A transitive Lie algebra is the symmetry algebra of a
local homogeneous subset of TRn if and only if it is
geometrically-maximal.

I Problem. To find geometrically transitive Lie algebras which
do not have the splitting property.
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I Thanks to Amos Nevo for a number of conversations
introducing me to the magic of Lie algebras and
proving for me several lemmas I could not prove myself.

Thanks to Uri Bader who answered many my questions.

I Thanks to the listeners.

Any comment will be strongly appreciated.

This talk is published in my homepage.
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