Transitive Lie algebras

Michail Zhitomirskii

April 18, 2013

(ロ)、(型)、(E)、(E)、(E)、(Q)、(Q)

$$\Sigma = \{\Sigma_x \subset T_x \mathbb{M}^n\}_{x \in M^n}, M^n$$
: analytic manifold

$$\Sigma = \{\Sigma_x \subset T_x \mathbb{M}^n\}_{x \in M^n}, M^n$$
: analytic manifold

Def. Σ is homogeneous if for any p₁, p₂ ∈ Mⁿ there exists a local analytic diffeo Φ : (Mⁿ, p₁) → (Mⁿ, p₂) such that

$$\Phi_{*,x}\Sigma_x = \Sigma_{\Phi(x)}, \ x \text{ close to } p_1.$$

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

$$\Sigma = \{\Sigma_x \subset T_x \mathbb{M}^n\}_{x \in M^n}, M^n$$
: analytic manifold

Def. Σ is homogeneous if for any p₁, p₂ ∈ Mⁿ there exists a local analytic diffeo Φ : (Mⁿ, p₁) → (Mⁿ, p₂) such that

$$\Phi_{*,x}\Sigma_x = \Sigma_{\Phi(x)}, \ x \text{ close to } p_1.$$

A local homogeneous subset Tℝⁿ is the germ at 0 ∈ ℝⁿ of a homogeneous subset of TU, U is a nbhd of 0 ∈ ℝⁿ. Germ wrt to x ∈ ℝⁿ, not wrt to a tangent vector.

$$\Sigma = \{\Sigma_x \subset T_x \mathbb{M}^n\}_{x \in M^n}, M^n$$
: analytic manifold

Def. Σ is homogeneous if for any p₁, p₂ ∈ Mⁿ there exists a local analytic diffeo Φ : (Mⁿ, p₁) → (Mⁿ, p₂) such that

$$\Phi_{*,x}\Sigma_x = \Sigma_{\Phi(x)}, \ x \text{ close to } p_1.$$

- A local homogeneous subset TRⁿ is the germ at 0 ∈ Rⁿ of a homogeneous subset of TU, U is a nbhd of 0 ∈ Rⁿ. Germ wrt to x ∈ Rⁿ, not wrt to a tangent vector.
- A local homogeneous subset TCⁿ (holomorphic tangent bundle):
 replace ℝⁿ by Cⁿ and local diffeos by local biholomorphisms.

- ロ ト - 4 回 ト - 4 □

• Riemannian metric on \mathbb{R}^2 = elliptic structure in $T\mathbb{R}^2$

・ロト < 団ト < 三ト < 三ト < 三 ・ のへ(?)

• Riemannian metric on \mathbb{R}^2 = elliptic structure in $T\mathbb{R}^2$

・ロト ・ 日 ・ モ ト ・ モ ・ うへで

• Hyperbolic structure in $T\mathbb{R}^2$

- Riemannian metric on \mathbb{R}^2 = elliptic structure in $T\mathbb{R}^2$
- Hyperbolic structure in $T\mathbb{R}^2$
- \mathfrak{a}_2 and \mathfrak{b}_2 (Abelian and non-Abelian 2-dim Lie algebras)

- Riemannian metric on \mathbb{R}^2 = elliptic structure in $T\mathbb{R}^2$
- Hyperbolic structure in $T\mathbb{R}^2$
- \mathfrak{a}_2 and \mathfrak{b}_2 (Abelian and non-Abelian 2-dim Lie algebras)
- Claim. There is a natural way to identify:

Local homogeneous subset of $\mathcal{T}\mathbb{R}^n$ up to diffeos	Subset of an n-dim Lie algebra up to automorphisms
Local homogeneous Riemannian metric on \mathbb{R}^2 with zero, resp. negative curvature	ellipse in $\mathfrak{a}_2,$ resp. \mathfrak{b}_2
Local homogeneous hyperbolic structure in $\mathcal{T}\mathbb{R}^2$	hyperbola in \mathfrak{b}_2
with zero, positive or negative curvature	if zero curvature also hyperbola in α ₂

► From an ellipse E, resp. hyperbola H in g = a₂, b₂ to elliptic, resp. hyperbolic structure in Tℝ²

From an ellipse E, resp. hyperbola H in g = a₂, b₂ to elliptic, resp. hyperbolic structure in Tℝ²

► Let G be a Lie group with the Lie algebra g. Push forward E, resp. H by the flows of left-invariant vector fields to a nbhd of id ∈ G.

- From an ellipse E, resp. hyperbola H in g = a₂, b₂ to elliptic, resp. hyperbolic structure in Tℝ²
- ► Let G be a Lie group with the Lie algebra g. Push forward E, resp. H by the flows of left-invariant vector fields to a nbhd of id ∈ G.
- ► All ellipses, resp. hyperbolas in a₂ are automorphic. If g = a₂ we obtain homogeneous "flat" elliptic or hyperbolic structure, "flat" = zero curvature.

- From an ellipse E, resp. hyperbola H in g = a₂, b₂ to elliptic, resp. hyperbolic structure in Tℝ²
- ► Let G be a Lie group with the Lie algebra g. Push forward E, resp. H by the flows of left-invariant vector fields to a nbhd of id ∈ G.
- ► All ellipses, resp. hyperbolas in a₂ are automorphic. If g = a₂ we obtain homogeneous "flat" elliptic or hyperbolic structure, "flat" = zero curvature.
- The classification of ellipses and hyperbolas in b₂ and the corresponding homogeneous elliptic and hyperbolic structures are as follows:

Ellipses and hyperbolas in \mathfrak{b}_2 : $[e_1, e_2] = e_2$	Local homogeneous subsets of $\mathcal{T}\mathbb{R}^2$
up to automorphisms	up to diffeomorphisms
Ellipse $x_1^2 + \theta x_2^2 = 1$ $\theta > 0$	Riemannian metrics with negative curvature $-\theta$
Hyperbola $x_1^2 - \theta x_2^2 = 1$ $\theta > 0$	Hyperbolic structure with negative curvature $-\theta$
Hyperbola $x_2^2 - \theta x_1^2 = 1$ $\theta > 0$	Hyperbolic structure with positive curvature θ
Hyperbola $x_1x_2 = 1$	Hyperbolic structure with <u>zero</u> curvature

► Take a Lie group G with the Lie algebra g = a₂ or g = b₂ and push forward an ellipse or hyperbola in g by the flows of left-invariant vector fields to a nbhd of id ∈ G.

・ロト・日本・モート モー うへぐ

- ► Take a Lie group G with the Lie algebra g = a₂ or g = b₂ and push forward an ellipse or hyperbola in g by the flows of left-invariant vector fields to a nbhd of id ∈ G.
- ► Generalization (<u>not</u> modest)
 - Replace Tℝ² by Tℝⁿ, resp. Tℂⁿ
 Tℂⁿ: holomorphic tangent bundle
 - replace a₂ or b₂ by <u>any</u> real, resp. complex *n*-dim Lie algebra g
 - \bullet Replace an ellipse or hyperbola by any subset of $\mathfrak{g}.$

We obtain a local homogeneous subset of $T\mathbb{R}^n$, resp. $T\mathbb{C}^n$.

- ► Take a Lie group G with the Lie algebra g = a₂ or g = b₂ and push forward an ellipse or hyperbola in g by the flows of left-invariant vector fields to a nbhd of id ∈ G.
- ► Generalization (<u>not</u> modest)
 - Replace Tℝ² by Tℝⁿ, resp. Tℂⁿ
 Tℂⁿ: holomorphic tangent bundle
 - replace a₂ or b₂ by <u>any</u> real, resp. complex *n*-dim Lie algebra g
 - \bullet Replace an ellipse or hyperbola by any subset of $\mathfrak{g}.$

We obtain a local homogeneous subset of $T\mathbb{R}^n$, resp. $T\mathbb{C}^n$.

► A local homogeneous subset of TRⁿ, resp. TCⁿ will be called special if it can<u>not</u> be obtained in this way, up to an analytic diffeo, resp. biholomorphism.

<u>Problem</u>. To find all special local homogeneous subsets of $T\mathbb{R}^n$, resp. $T\mathbb{C}^n$, if any.

・ロト ・ 日 ・ モ ト ・ モ ・ うへで

- ► Some results (M.Zh, 2012-13)
- ▶ 1. In $T\mathbb{C}^2$ there are <u>no</u> special local homogeneous subsets.

- ► Some results (M.Zh, 2012-13)
- ▶ 1. In $T\mathbb{C}^2$ there are <u>no</u> special local homogeneous subsets.
- ▶ 2. In TR² an example of a special local homogeneous subset is a Riemannian metrics with positive curvature.

・ロト・日本・モート モー うへぐ

► Some results (M.Zh, 2012-13)

- ▶ 1. In $T\mathbb{C}^2$ there are <u>no</u> special local homogeneous subsets.
- ▶ 2. In TR² an example of a special local homogeneous subset is a Riemannian metrics with positive curvature.

In some sense it is the only example: any special local homogeneous subset of Tℝ² has symmetry algebra so₃(ℝ).

► Some results (M.Zh, 2012-13)

- ▶ 1. In $T\mathbb{C}^2$ there are <u>no</u> special local homogeneous subsets.
- ▶ 2. In TR² an example of a special local homogeneous subset is a Riemannian metrics with positive curvature.
- In some sense it is the only example: any special local homogeneous subset of Tℝ² has symmetry algebra so₃(ℝ).
- ► 3. In TC³ within local homogeneous <u>linear subsets</u> (plane fields, affine plane fields, line fields, affine line fields) there are no special ones.

► Some results (M.Zh, 2012-13)

- ▶ 1. In $T\mathbb{C}^2$ there are <u>no</u> special local homogeneous subsets.
- ▶ 2. In TR² an example of a special local homogeneous subset is a Riemannian metrics with positive curvature.
- In some sense it is the only example: any special local homogeneous subset of Tℝ² has symmetry algebra so₃(ℝ).
- ► 3. In TC³ within local homogeneous <u>linear subsets</u> (plane fields, affine plane fields, line fields, affine line fields) there are no special ones.
- ► 4. In TC⁴ within local homogeneous <u>linear subsets</u> the only special one is the most involved class of affine line fields.
 The symmetry algebra for this class is ∞-dim.

there are special local homogeneous (non-linear) subsets

their symmetry algebra can be explicitly classified up to diffeos.

In the case $T\mathbb{C}^3$ the symmetry algebras of special local homogeneous subsets are, up to biholomorphisms:

two single symmetry algebras and two 1-parameter families; all are $\infty\text{-dim}.$

there are special local homogeneous (non-linear) subsets

their symmetry algebra can be explicitly classified up to diffeos.

In the case $T\mathbb{C}^3$ the symmetry algebras of special local homogeneous subsets are, up to biholomorphisms:

two single symmetry algebras and two 1-parameter families; all are $\infty\text{-dim}.$

there are special local homogeneous (non-linear) subsets

their symmetry algebra can be explicitly classified up to diffeos.

In the case $T\mathbb{C}^3$ the symmetry algebras of special local homogeneous subsets are, up to biholomorphisms:

two single symmetry algebras and two 1-parameter families; all are $\infty\text{-dim}.$

there are special local homogeneous (non-linear) subsets

their symmetry algebra can be explicitly classified up to diffeos.

In the case $T\mathbb{C}^3$ the symmetry algebras of special local homogeneous subsets are, up to biholomorphisms:

two single symmetry algebras and two 1-parameter families; all are $\infty\text{-dim}.$

there are special local homogeneous (non-linear) subsets

their symmetry algebra can be explicitly classified up to diffeos.

In the case $T\mathbb{C}^3$ the symmetry algebras of special local homogeneous subsets are, up to biholomorphisms:

two single symmetry algebras and two 1-parameter families; all are $\infty\text{-dim}.$

► I do not know an example of a special local homogeneous subset of TCⁿ with finite-dim symmetry algebra.

Working doubtful conjecture: such example does not exist.

A local affine line field in $T\mathbb{K}^n$, $\mathbb{K} = \mathbb{R}$, \mathbb{C} can be defined by two vector field germs A, Bwhere B shows direction and A is "drift". A and B are defined up to $B \to H_1B$, $A \to A + H_2B$, $H_1(0) \neq 0$.

Within local homogeneous affine line fields:

the simplest class can be called "flat", it is defined by: $[A, B](x) \in span(B(x))$ for any x.

The most involved class is defined by

 $\begin{array}{l} [B, [A, B]](x) \in span \{B(x), [A, B](x)\}, \\ [A, [A, [A, B]]](0) \not\in span \{B(0), [A, B](0), [A, [A, B]](0)\}, \\ [B, [A, [A, [A, B]]]](x) \in span \{B(x), [A, B](x), [A, [A, B]](x)\} \end{array} \\ The symmetry algebra is \\ f(x_1)\frac{\partial}{\partial x_1} + f'(x_1)\frac{\partial}{\partial x_2} + e^{x_3}f''(x_1)\frac{\partial}{\partial x_3} + \left(e^{2x_2}f'''(x_1) + e^{x_2}f''(x_1)\right)\frac{\partial}{\partial x_4}. \end{array} \\ It is isomorphic to the Lie algebra of all vector field germs on <math>\mathbb{K}. \end{array}$

► Infinitesimal symmetries

and transitive Lie algebras of vector fields

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

- Infinitesimal symmetries and transitive Lie algebras of vector fields
- ► Σ is a local subset of TKⁿ, K = R, C. All vector fields are analytic (K = R) or holomorphic (K = C).

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

- Infinitesimal symmetries and transitive Lie algebras of vector fields
- Σ is a local subset of TKⁿ, K = R, C. All vector fields are analytic (K = R) or holomorphic (K = C).
- A vector field germ V at 0 ∈ Kⁿ is an infinitesimal symmetry of Σ if

 $\Phi_*^t \Sigma_x = \Sigma_{\Phi(x)}, \ x \text{ close to } 0 \in \mathbb{K}^n, \ t \text{ close to } 0 \in \mathbb{K}$

・ロト・日本・モート モー うへぐ

- Infinitesimal symmetries and transitive Lie algebras of vector fields
- Σ is a local subset of TKⁿ, K = R, C. All vector fields are analytic (K = R) or holomorphic (K = C).
- A vector field germ V at 0 ∈ Kⁿ is an infinitesimal symmetry of Σ if

$$\Phi^t_*\Sigma_x=\Sigma_{\Phi(x)}, \;\; x \; ext{close to } 0\in \mathbb{K}^n, \; t \; ext{close to } 0\in \mathbb{K}$$

 All infinitesimal symmetries of Σ = Lie algebra of vector fields = symmetry algebra of Σ = sym(Σ).

Thm. Σ is homogeneous if and only if $dim(sym(\Sigma)(0)) = n$.

- Infinitesimal symmetries and transitive Lie algebras of vector fields
- ► Σ is a local subset of TKⁿ, K = R, C. All vector fields are analytic (K = R) or holomorphic (K = C).
- A vector field germ V at 0 ∈ Kⁿ is an infinitesimal symmetry of Σ if

$$\Phi^t_*\Sigma_x=\Sigma_{\Phi(x)},\;\;x\; ext{close to}\;0\in\mathbb{K}^n,\;t\; ext{close to}\;0\in\mathbb{K}$$

 All infinitesimal symmetries of Σ = Lie algebra of vector fields = symmetry algebra of Σ = sym(Σ).

Thm. Σ is homogeneous if and only if $dim(sym(\Sigma)(0)) = n$.

- ロ ト - 4 回 ト - 4 □

▶ Def. A Lie algebra L of vector field germs at 0 ∈ Kⁿ is called transitive if dimL(0) = n.

- Infinitesimal symmetries and transitive Lie algebras of vector fields
- ► Σ is a local subset of TKⁿ, K = R, C. All vector fields are analytic (K = R) or holomorphic (K = C).
- A vector field germ V at 0 ∈ Kⁿ is an infinitesimal symmetry of Σ if

$$\Phi^t_*\Sigma_x=\Sigma_{\Phi(x)},\;\;x\; ext{close to}\;0\in\mathbb{K}^n,\;t\; ext{close to}\;0\in\mathbb{K}$$

 All infinitesimal symmetries of Σ = Lie algebra of vector fields = symmetry algebra of Σ = sym(Σ).

Thm. Σ is homogeneous if and only if $dim(sym(\Sigma)(0)) = n$.

- ▶ Def. A Lie algebra L of vector field germs at 0 ∈ Kⁿ is called transitive if dimL(0) = n.
- ► Thus the symmetry algebra of any local homogeneous subset of TKⁿ is transitive. But not any transitive algebra of vector field germs is the symmetry algebra of some local homogeneous subset of TKⁿ.

 Local homogeneous subsets of TKⁿ and splitting property of transitive algebras

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

- Local homogeneous subsets of TKⁿ and splitting property of transitive algebras
- ► Any Lie algebra of vector field germs at 0 ∈ Kⁿ has a very important subalgebra consisting of vector field germs vanishing at 0. It is called isotropy subalgebra.

- Local homogeneous subsets of T Kⁿ and splitting property of transitive algebras
- Any Lie algebra of vector field germs at 0 ∈ Kⁿ has a very important subalgebra consisting of vector field germs vanishing at 0. It is called isotropy subalgebra.
- ► Recall the basic construction of local homogeneous subsets Σ ⊂ T Kⁿ:

Take an n-dim Lie algebra \mathfrak{g} , a subset of \mathfrak{g} , and push this subset forward to a nbhd of id of $G = \exp(\mathfrak{g})$ by the flows of left-invariant vector fields. Bring the obtained local subset of TG to a local subset $\Sigma \subset \mathbb{K}^n$ by a local analytic diffeo $(\mathbb{K} = \mathbb{C}: \text{ biholomorphism}) (G, id) \rightarrow (\mathbb{K}^n, 0).$

- Local homogeneous subsets of T Kⁿ and splitting property of transitive algebras
- Any Lie algebra of vector field germs at 0 ∈ Kⁿ has a very important subalgebra consisting of vector field germs vanishing at 0. It is called isotropy subalgebra.
- ► Recall the basic construction of local homogeneous subsets Σ ⊂ T Kⁿ:

Take an n-dim Lie algebra \mathfrak{g} , a subset of \mathfrak{g} , and push this subset forward to a nbhd of id of $G = \exp(\mathfrak{g})$ by the flows of left-invariant vector fields. Bring the obtained local subset of TG to a local subset $\Sigma \subset \mathbb{K}^n$ by a local analytic diffeo $(\mathbb{K} = \mathbb{C}: \text{ biholomorphism})(G, id) \rightarrow (\mathbb{K}^n, 0).$

Consider the symmetry algebra sym(Σ) and its isotropy subalgebra *I* ⊂ sym(Sigma). The construction implies

 $sym(\Sigma) = \mathfrak{g} + I.$

A D > 4 回 > 4 回 > 4 回 > 1 の 4 回

► Local homogeneous subsets of TKⁿ and splitting property of transitive algebras

Let *L* be a transitive Lie algebra of vector field germs at $0 \in \mathbb{K}^n$. Let *I* be its isotropy subalgebra. Note that *I* is a subspace of *L* of codimension *n*.

Def. I will say that *L* has the splitting property if *I* has a complement in *L* which is a Lie algebra, i.e. L = g + I for some *n*-dim Lie algebra *g*.

 Local homogeneous subsets of TKⁿ and splitting property of transitive algebras

Let *L* be a transitive Lie algebra of vector field germs at $0 \in \mathbb{K}^n$. Let *I* be its isotropy subalgebra. Note that *I* is a subspace of *L* of codimension *n*.

Def. I will say that *L* has the splitting property if *I* has a complement in *L* which is a Lie algebra, i.e. L = g + I for some *n*-dim Lie algebra *g*.

► Recall that a local homogeneous subset of TKⁿ is called special if it cannot be obtained by the given construction.

Prop. A local homogeneous subset $\Sigma T \mathbb{K}^n$ is special if and only if its symmetry algebra $sym(\Sigma)$ does not have the splitting property.

• Examples of special local homogeneous subsets of $T\mathbb{K}^n$

- Examples of special local homogeneous subsets of $T\mathbb{K}^n$
- ► 1. Local Riemannian metrics (elliptic structure) on R² with positive curvature.

The symmetry algebra, as an abstract Lie algebra, is $\mathfrak{so}_3(\mathbb{R})$. The isotropy subalgebra is 1-dimensional. The splitting property does not hold simply because $\mathfrak{so}_3(\mathbb{R})$ does not contain any 2-dim subalgebras.

・ロト・日本・モート モー うへぐ

- Examples of special local homogeneous subsets of $T\mathbb{K}^n$
- ► 1. Local Riemannian metrics (elliptic structure) on R² with positive curvature.

The symmetry algebra, as an abstract Lie algebra, is $\mathfrak{so}_3(\mathbb{R})$. The isotropy subalgebra is 1-dimensional. The splitting property does not hold simply because $\mathfrak{so}_3(\mathbb{R})$ does not contain any 2-dim subalgebras.

 ▶ 2. The mentioned above class of local homogeneous affine line fields on K⁴, with the ∞-dim symmetry algebra

$$f(x_1)\frac{\partial}{\partial x_1} + f'(x_1)\frac{\partial}{\partial x_2} + e^{x_3}f''(x_1)\frac{\partial}{\partial x_3} + \left(e^{2x_2}f'''(x_1) + e^{x_2}f''(x_1)\right)\frac{\partial}{\partial x_4}$$

As an abstract Lie algebra it is isomorphic to the Lie algebra Vect(1) of all vector field germs on \mathbb{K} . The splitting property does not hold simply because Vect(1) does not contain any 4-dim subalgebras (exercise).

► 1. Which transitive Lie algebras of vector field germs are symmetry algebras of some local homog. subset of TKⁿ?

- ► 1. Which transitive Lie algebras of vector field germs are symmetry algebras of some local homog. subset of TKⁿ?
- ► 2. Is it possible to deal with transitive Lie algebras of vector field germs as with abstract Lie algebras endowed with a subalgebra (corresponding to the isotropy subalgebra)?

- ► 1. Which transitive Lie algebras of vector field germs are symmetry algebras of some local homog. subset of TKⁿ?
- ► 2. Is it possible to deal with transitive Lie algebras of vector field germs as with abstract Lie algebras endowed with a subalgebra (corresponding to the isotropy subalgebra)?
- 2.1 Let (L, I) and (L, I) are transitive Lie algebras of vector field germs on Kⁿ, where I and I are isotropy sublagebras.
 Is it true that L and L are diffeomorphic (i.e. there exists a local diffeo Φ of Kⁿ such that Φ_{*}L = L) if and only if (L, I) and (L, I) are isomorphic, i.e. there exists an isomorphism from L to L sending I to I?

- ► 1. Which transitive Lie algebras of vector field germs are symmetry algebras of some local homog. subset of TKⁿ?
- ► 2. Is it possible to deal with transitive Lie algebras of vector field germs as with abstract Lie algebras endowed with a subalgebra (corresponding to the isotropy subalgebra)?
- 2.1 Let (L, I) and (L, I) are transitive Lie algebras of vector field germs on Kⁿ, where I and I are isotropy sublagebras.
 Is it true that L and L are diffeomorphic (i.e. there exists a local diffeo Φ of Kⁿ such that Φ_{*}L = L) if and only if (L, I) and (L, I) are isomorphic, i.e. there exists an isomorphism from L to L sending I to I?
- ► 2.2 Under which condition, if any, an abstract Lie algebra L endowed with a subalgebra I of codimension n can be realized as a transitive Lie algebra of vector field germs on Kⁿ with the isotropy subalgebra I?

 Transitive Lie algebras of vector field germs and abstract transitive Lie algebras. Nagano principle

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

- Transitive Lie algebras of vector field germs and abstract transitive Lie algebras. Nagano principle
- Prop. The isotropy subalgebra *l* of a transitive algebra *L* of vector field germs does not contain non-trivial ideals of *L*.

- Transitive Lie algebras of vector field germs and abstract transitive Lie algebras. Nagano principle
- Prop. The isotropy subalgebra *l* of a transitive algebra *L* of vector field germs does not contain non-trivial ideals of *L*.
- Def. An abstract transitive Lie algebra is a Lie algebra g endowed with a subalgebra *I* (called isotropy subalgebra) containing no non-trivial ideals of the whole algebra.

Two abstract transitive Lie algebras (\mathfrak{g}, I) and $(\tilde{\mathfrak{g}}, \tilde{I})$ are isomorphic if there exists an isomorphism $T : \mathfrak{g} \to \tilde{\mathfrak{g}}$ such that $T(I) = \tilde{I}$.

- Transitive Lie algebras of vector field germs and abstract transitive Lie algebras. Nagano principle
- Prop. The isotropy subalgebra *l* of a transitive algebra *L* of vector field germs does not contain non-trivial ideals of *L*.
- Def. An abstract transitive Lie algebra is a Lie algebra g endowed with a subalgebra *I* (called isotropy subalgebra) containing no non-trivial ideals of the whole algebra.

Two abstract transitive Lie algebras (\mathfrak{g}, I) and $(\tilde{\mathfrak{g}}, \tilde{I})$ are isomorphic if there exists an isomorphism $T : \mathfrak{g} \to \tilde{\mathfrak{g}}$ such that $T(I) = \tilde{I}$.

▶ Prop. Any <u>finite-dim</u> abstract transitive Lie algebra (g, I) can be realized by a transitive Lie algebra of vector field germs on Kⁿ, where n = codim I.

- Transitive Lie algebras of vector field germs and abstract transitive Lie algebras. Nagano principle
- Prop. The isotropy subalgebra *l* of a transitive algebra *L* of vector field germs does not contain non-trivial ideals of *L*.
- Def. An abstract transitive Lie algebra is a Lie algebra g endowed with a subalgebra *I* (called isotropy subalgebra) containing no non-trivial ideals of the whole algebra.

Two abstract transitive Lie algebras (\mathfrak{g}, I) and $(\widetilde{\mathfrak{g}}, \widetilde{I})$ are isomorphic if there exists an isomorphism $T : \mathfrak{g} \to \widetilde{\mathfrak{g}}$ such that $T(I) = \widetilde{I}$.

- ▶ Prop. Any <u>finite-dim</u> abstract transitive Lie algebra (g, I) can be realized by a transitive Lie algebra of vector field germs on Kⁿ, where n = codim I.
- ► Thm (H.J. Sussmann, 1974) Two <u>finite-dim</u> transitive Lie algebras of vector field germs on Kⁿ are diffeomorphic if and only if they are isomorphic as abstract transitive Lie algebras.

Prop. The isotropy subalgebra I of a transitive algebra L of vector field germs does not contain non-trivial ideals of L.

PROOF. Let $R \in I$ be an ideal of L. Assume $R \neq \{0\}$. Take in R a vector field V whose Taylor series starts with terms of minimal possible order $d \ge 1$ (here we use analyticity):

 $R \supset V = V^{(d)} + h.o.t., V^{(d)}$ homogeneous of order d

Since L is transitive, L contains vector fields

$$a_i = \frac{\partial}{\partial x_i} + h.o.t.$$

Since R is an ideal, $[a_i, V] \in R$. We have

$$[a_i, V] = \left[\frac{\partial}{\partial x_i}, V^{(d)}\right] + h.o.t.$$

If at least one of $\left[\frac{\partial}{\partial x_i}, V^{(d)}\right]$ is not zero we get contradiction to the assumption that d is minimal possible. Therefore

$$\left[\frac{\partial}{\partial x_i}, V^{(d)}\right] = 0, \quad i = 1, ..., n.$$

Since $d \ge 1$ it follows $V^{(d)} = 0$. Contradiction.

Prop. Any <u>finite-dim</u> abstract transitive Lie algebra (\mathfrak{g}, I) can be realized by a transitive Lie algebra of vector field germs on \mathbb{K}^n , where n = codim I.

Proof. Let G be a nbhd of *id* of a Lie group of \mathfrak{g} . Factorize G by the equivalence $g_1 \sim g_2$ if $g_2 = g_1 e^{\lambda}$ for some $\lambda \in I$. We obtain an *n*-dimensional manifold M. The left-invariant vector fields on G define vector fields on M. We obtain a Lie algebra L of vector fields on M.

Let $\lambda \in I$. It defines a flow on M: $g \to e^{t\lambda}g$. We have $id \to e^{t\lambda} \sim id$. Therefore the left invariant vector field defined by vectors in I give, after the factorization, vector field on M which vanish at $id \in M$. Therefore they belong to the isotropy subalgebra of L. The fact that the isotropy subalgebra of L contains nothing else and dim L(id) = n follows from the condition that I contains no non-trivial ideals of \mathfrak{g} .

• Example: $(\mathfrak{so}_3(\mathbb{C}), I)$, dim I = 1

There are two such transitive Lie algebras, up to isomorphisms, corresponding to singular and non-singular directions span(b) in $\mathfrak{so}_3(\mathbb{C})$. The singular directions are defined by: ad(b) is a nilpotent operator.

In the standard basis $[e_1, e_2] = e_3$, $[e_2, e_3] = e_1$, $[e_3, e_1] = e_2$ the singular directions are spanned by vectors $r_1e_1 + r_2e_2 + r_3e_3$ where $r_1^2 + r_2^2 + r_3^2 = 0$.

• Example: $(\mathfrak{sl}_2(\mathbb{R}), I)$, dim I = 1

There are three such transitive Lie algebras, up to isomorphisms, corresponding to singular, hyperbolic and elliptic directions. The singular directions span(b) are defined as for $\mathfrak{so}_3(\mathbb{C})$, but now they form a cone separating

ad(b) has eigenvalues $0, \pm 1$ (up to a factor): hyperbolic ad(b) has eigenvalues $0, \pm i$ (up to a factor): elliptic

► Claim. Any transitive Lie algebra (sl₂(ℝ), I) has the splitting property.

If dim I = 2 it is obvious. If dim I = 1 one has

 $\mathfrak{sl}_2(\mathbb{R}) = \mathfrak{b}_2 + I$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□

► Claim. Any transitive Lie algebra (sl₂(ℝ), I) has the splitting property.

If dim I = 2 it is obvious. If dim I = 1 one has

$$\mathfrak{sl}_2(\mathbb{R}) = \mathfrak{b}_2 + I$$

Example:

for \mathfrak{sl}_2 : $[a_1, a_2] = b$, $[a_1, b] = a_1$, $[a_2, b] = -a_2$ and l = span(b)one has $\mathfrak{b}_2 = span(a_1 + r_1b, a_2 + r_2b)$ where $r_1r_2 = 1/2$.

・ロト・日本・日本・日本・日本・日本

► Claim. Any transitive Lie algebra (sl₂(ℝ), I) has the splitting property.

If dim I = 2 it is obvious. If dim I = 1 one has

$$\mathfrak{sl}_2(\mathbb{R}) = \mathfrak{b}_2 + I$$

Example:

for
$$\mathfrak{sl}_2$$
: $[a_1, a_2] = b$, $[a_1, b] = a_1$, $[a_2, b] = -a_2$
and $I = span(b)$

one has $b_2 = span(a_1 + r_1b, a_2 + r_2b)$ where $r_1r_2 = 1/2$.

 In so₃(ℝ), unlike so₃(ℂ), all directions *I* are equal (automorphic);

they are equally bad because $(\mathfrak{so}_3(\mathbb{C}), I)$ does not have the splitting property: $\mathfrak{so}_3(\mathbb{C})$ does not have any 2-dim subalgbras.

Ellipses and hyperbolas in \mathfrak{b}_2 : $[e_1, e_2] = e_2$ up to automorphisms	Local homog. subsets of $\mathcal{T}\mathbb{R}^2$ up to diffeos	symm. algebra is transitive Lie algebra
Ellipse $x_1^2 + \theta x_2^2 = 1$ $\theta > 0$	Riemannian metric with negative curvature $-\theta$	$(\mathfrak{sl}_2(\mathbb{R}),I)$ elliptic 1-dim I
Hyperbola $x_1^2 - heta x_2^2 = 1$ heta > 0	Hyperbolic struct. with negative curvature $-\theta$	$(\mathfrak{sl}_2(\mathbb{R}),I)$ hyperb. 1-dim I
Hyperbola $x_2^2 - \theta x_1^2 = 1$	Hyperbolic struct. with positive curvature θ	$(\mathfrak{sl}_2(\mathbb{R}),I)$ hyperb. 1-dim I
Hyperbola $x_1x_2=1$	Hyperbolic struct. with <u>zero</u> curvature	$ \begin{pmatrix} \left(\mathbb{R} + \mathfrak{a}^2 \right)_{\pm 1}, \mathbb{R} \end{pmatrix} \\ [z,x] = x, [z,y] = -y, \\ [x,y] = 0 \end{cases} $

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Not any transitive Lie algebra is a symmetry algebra of a local homogeneous subset of TKⁿ

- Not any transitive Lie algebra is a symmetry algebra of a local homogeneous subset of T Kⁿ
- ► The table contains transitive Lie algebras (sl₂(ℝ), I) with hyperbolic and with elliptic, but <u>not</u> singular 1-dim I. Why?

- ► Not any transitive Lie algebra is a symmetry algebra of a local homogeneous subset of T Kⁿ
- ► The table contains transitive Lie algebras (sl₂(ℝ), I) with hyperbolic and with elliptic, but <u>not</u> singular 1-dim I. Why?

► Claim: if *I* ∈ sl₂(K) is singular, there is no local homogeneous subset of *T*K² with the symmetry algebra (sl₂(K), *I*).

- ► Not any transitive Lie algebra is a symmetry algebra of a local homogeneous subset of T Kⁿ
- ► The table contains transitive Lie algebras (sl₂(ℝ), I) with hyperbolic and with elliptic, but <u>not</u> singular 1-dim I. Why?
- Claim: if *I* ∈ sl₂(K) is singular, there is no local homogeneous subset of *T*K² with the symmetry algebra (sl₂(K), *I*).
- Prop. If Σ is a local homogeneous subset of TKⁿ and sym(Σ) contains a transitive Lie algebra (L, I) which belongs to a bigger transitive Lie algebra (L, I) and the central part of these two transitive Lie algebras are the same or geometrically-same then sim(Σ) also contains (L, I).

- ► Not any transitive Lie algebra is a symmetry algebra of a local homogeneous subset of T Kⁿ
- ► The table contains transitive Lie algebras (sl₂(ℝ), I) with hyperbolic and with elliptic, but <u>not</u> singular 1-dim I. Why?
- Claim: if *I* ∈ sl₂(K) is singular, there is no local homogeneous subset of *T*K² with the symmetry algebra (sl₂(K), *I*).
- Prop. If Σ is a local homogeneous subset of TKⁿ and sym(Σ) contains a transitive Lie algebra (L, I) which belongs to a bigger transitive Lie algebra (L̃, Ĩ) and the central part of these two transitive Lie algebras are the same or geometrically-same then sim(Σ) also contains (L̃, Ĩ).

▶ For
$$(\mathfrak{sl}_2(\mathbb{R}), I)$$
 with singular I : $\widetilde{L} = \left\{ f'(x_2) \frac{\partial}{\partial x_1} + f(x_2) \frac{\partial}{\partial x_2} \right\}.$

Central part of a transitive Lie algebra

Def. The central part of a Lie algebra (L, I) of vector field germs at $0 \in \mathbb{K}^n$ is the linear approximations of the vector fields $V \in I$ at 0.

These linear approximation are linear vector fields on $T_0\mathbb{K}^n$ and form a subalgebra of $\mathfrak{gl}_n(\mathbb{K})$.

Central part of a transitive Lie algebra

Def. The central part of a Lie algebra (L, I) of vector field germs at $0 \in \mathbb{K}^n$ is the linear approximations of the vector fields $V \in I$ at 0.

These linear approximation are linear vector fields on $T_0\mathbb{K}^n$ and form a subalgebra of $\mathfrak{gl}_n(\mathbb{K})$.

► The same definition in terms of abstract transitive Lie algebra (g, I):

The central part is the factor-algebra I/\sim where $b_1, b_2 \in I$ are equivalent if $[(b_1 - b_2), \mathfrak{g}] \subseteq I$.

Central part of a transitive Lie algebra

Def. The central part of a Lie algebra (L, I) of vector field germs at $0 \in \mathbb{K}^n$ is the linear approximations of the vector fields $V \in I$ at 0.

These linear approximation are linear vector fields on $T_0\mathbb{K}^n$ and form a subalgebra of $\mathfrak{gl}_n(\mathbb{K})$.

The same definition in terms of abstract transitive Lie algebra (g, I):

The central part is the factor-algebra I/\sim where $b_1, b_2 \in I$ are equivalent if $[(b_1 - b_2), \mathfrak{g}] \subseteq I$.

 If two abstract transitive Lie algebras are isomorphic then their central parts A₁, A₂ ⊂ gl_n(K) are conjugate: T⁻¹A₁T = A₂ for some non-singular T, which is much stronger then isomorphic. ▶ Why ($\mathfrak{sl}_2(\mathbb{K}), I$) with singular I belongs namely to $f'(x_2)\frac{\partial}{\partial x_1} + f(x_2)\frac{\partial}{\partial x_2}$ and why they have the same central part?

▶ Why ($\mathfrak{sl}_2(\mathbb{K}), I$) with singular I belongs namely to $f'(x_2)\frac{\partial}{\partial x_1} + f(x_2)\frac{\partial}{\partial x_2}$ and why they have the same central part?

- ロ ト - 4 回 ト - 4 □

► The central part of $(\mathfrak{sl}_2(\mathbb{K}), I)$ with singular I is the vector field $x_2 \frac{\partial}{\partial x_1}$ on $T_0 \mathbb{K}^2$, defined up to $\overline{GL(2)}$.

- ▶ Why ($\mathfrak{sl}_2(\mathbb{K}), I$) with singular I belongs namely to $f'(x_2)\frac{\partial}{\partial x_1} + f(x_2)\frac{\partial}{\partial x_2}$ and why they have the same central part?
- ► The central part of (sl₂(K), I) with singular I is the vector field x₂ ∂/∂x₁ on T₀K², defined up to GL(2).
- ► The key point is that the vector field $x_2 \frac{\partial}{\partial x_1}$ on $T_0 \mathbb{K}^2$ has an invariant <u>affine</u> line $l^{af} \subset T_0 \mathbb{K}^2$, for example $\frac{\partial}{\partial x_2} + span(\frac{\partial}{\partial x_1})$.

- ▶ Why ($\mathfrak{sl}_2(\mathbb{K}), I$) with singular I belongs namely to $f'(x_2)\frac{\partial}{\partial x_1} + f(x_2)\frac{\partial}{\partial x_2}$ and why they have the same central part?
- ► The central part of (sl₂(K), I) with singular I is the vector field x₂ ∂/∂x₁ on T₀K², defined up to GL(2).
- ► The key point is that the vector field $x_2 \frac{\partial}{\partial x_1}$ on $T_0 \mathbb{K}^2$ has an invariant <u>affine</u> line $l^{af} \subset T_0 \mathbb{K}^2$, for example $\frac{\partial}{\partial x_2} + span(\frac{\partial}{\partial x_1})$.
- ▶ Push forward l^{af} by the flows of sl₂. We obtain <u>homogeneous</u> <u>affine line field</u> L^{af} in TK² with a certain transitive Lie algebra which <u>contains</u> (sl₂(K), I).

- ▶ Why ($\mathfrak{sl}_2(\mathbb{K}), I$) with singular I belongs namely to $f'(x_2)\frac{\partial}{\partial x_1} + f(x_2)\frac{\partial}{\partial x_2}$ and why they have the same central part?
- ► The central part of (sl₂(K), I) with singular I is the vector field x₂ ∂/∂x₁ on T₀K², defined up to GL(2).
- ► The key point is that the vector field x₂ ∂/∂x₁ on T₀K² has an invariant <u>affine</u> line l^{af} ⊂ T₀K², for example ∂/∂x₁ + span(∂/∂x₁).
- ▶ Push forward l^{af} by the flows of sl₂. We obtain <u>homogeneous</u> <u>affine line field</u> L^{af} in TK² with a certain transitive Lie algebra which <u>contains</u> (sl₂(K), I).
- ► L^{af} can be described by a differential 1-form α , $\alpha(0) \neq 0$: $L_x = \{v \in T_x \mathbb{K}^n : \alpha(x) = 1\}$. Due to homogeneity either $d\alpha(0) \neq 0$ or $d\alpha \equiv 0$. If $d\alpha(0) \neq 0$ then the central part of $sym(L^{af})$ is conjugate to $x_2 \frac{\partial}{\partial x_1}$.

- ▶ Why ($\mathfrak{sl}_2(\mathbb{K}), I$) with singular I belongs namely to $f'(x_2)\frac{\partial}{\partial x_1} + f(x_2)\frac{\partial}{\partial x_2}$ and why they have the same central part?
- ► The central part of (sl₂(K), I) with singular I is the vector field x₂ ∂/∂x₁ on T₀K², defined up to GL(2).
- ► The key point is that the vector field x₂ ∂/∂x₁ on T₀K² has an invariant <u>affine</u> line l^{af} ⊂ T₀K², for example ∂/∂x₁ + span(∂/∂x₁).
- ▶ Push forward l^{af} by the flows of sl₂. We obtain <u>homogeneous</u> affine line field L^{af} in TK² with a certain transitive Lie algebra which <u>contains</u> (sl₂(K), I).
- ► L^{af} can be described by a differential 1-form α , $\alpha(0) \neq 0$: $L_x = \{v \in T_x \mathbb{K}^n : \alpha(x) = 1\}$. Due to homogeneity either $d\alpha(0) \neq 0$ or $d\alpha \equiv 0$. If $d\alpha(0) \neq 0$ then the central part of $sym(L^{af})$ is conjugate to $x_2 \frac{\partial}{\partial x_1}$.
- All α such that α(0) ≠ 0 and dα(0) ≠ 0 are locally diffeomorphic, for example to e α = e^{x₁}dx₂. The symmetry algebra of this α, i.e. the vector fields Z such that L_Zα = d(Z ⊥α) + Z ⊥ dα = 0 is exactly f'(x₁) ∂/∂x₁ + f(x₁) ∂/∂x₂.

 $) \land ()$

As mentioned, I know few examples of special local homogeneous subset of TCⁿ (which is not defined up to biholomorphisms by a subset of an *n*-dim complex Lie algebra) whose symmetry algebra is ∞-dimensional.

- As mentioned, I know few examples of special local homogeneous subset of TCⁿ (which is not defined up to biholomorphisms by a subset of an *n*-dim complex Lie algebra) whose symmetry algebra is ∞-dimensional.
- I do not know such examples with a <u>finite-dimensional</u> <u>complex</u> symmetry algebra because I do not know examples of <u>complex</u> finite-dim transitive Lie algebras which:
 - (a) do not have the splitting property AND
 - (b) are geometrically-maximal = symmetry algebras of some local homogeneous subset of the tangent bundle.

- As mentioned, I know few examples of special local homogeneous subset of TCⁿ (which is not defined up to biholomorphisms by a subset of an *n*-dim complex Lie algebra) whose symmetry algebra is ∞-dimensional.
- I do not know such examples with a <u>finite-dimensional</u> <u>complex</u> symmetry algebra because I do not know examples of <u>complex</u> finite-dim transitive Lie algebras which:
 - (a) do not have the splitting property AND
 (b) are geometrically-maximal = symmetry algebras of some local homogeneous subset of the tangent bundle.

► Exercise. Give an example of a finite-dimensional complex transitive Lie algebra which does not have the splitting property (refusing from (b)). The simplest I know is span(a₁, a₂, a₃, b), [a₂, b] = a₁, [a₂, a₃] = b, all other brackets are zero, the isotropy subalgebra is span(b).

- As mentioned, I know few examples of special local homogeneous subset of TCⁿ (which is not defined up to biholomorphisms by a subset of an *n*-dim complex Lie algebra) whose symmetry algebra is ∞-dimensional.
- I do not know such examples with a <u>finite-dimensional</u> <u>complex</u> symmetry algebra because I do not know examples of <u>complex</u> finite-dim transitive Lie algebras which:
 - (a) do not have the splitting property AND
 (b) are <u>geometrically-maximal</u> = symmetry algebras of some local homogeneous subset of the tangent bundle.
- ► Exercise. Give an example of a finite-dimensional complex transitive Lie algebra which does not have the splitting property (refusing from (b)). The simplest I know is span(a₁, a₂, a₃, b), [a₂, b] = a₁, [a₂, a₃] = b, all other brackets are zero, the isotropy subalgebra is span(b).
- ► But unfortunately (or fortunately?) this transitive Lie algebra is not the symmetry algebra of any local homogeneous subset of TC⁴.

Prop. If Σ is a local homogeneous subset of TKⁿ and sym(Σ) contains a transitive Lie algebra (L, I) which belongs to a bigger transitive Lie algebra (L̃, Ĩ) and the central part of these two transitive Lie algebras are the same or geometrically-same then sim(Σ) also contains (L̃, Ĩ).

- Prop. If Σ is a local homogeneous subset of TKⁿ and sym(Σ) contains a transitive Lie algebra (L, I) which belongs to a bigger transitive Lie algebra (L̃, Ĩ) and the central part of these two transitive Lie algebras are the same or geometrically-same then sim(Σ) also contains (L̃, Ĩ).
- Definition of geometrically-same

Two Lie subalgebras $\mathfrak{g}_1, \mathfrak{g}_2 \subset \mathfrak{gl}_n(\mathbb{K})$, viewed as <u>linear vector fields on $T_0\mathbb{K}^n$ </u> (and therefore defined up to conjugacy rather then isomorphisms) are geometrically same if any \mathfrak{g}_1 -invariant subset of $T_0\mathbb{K}^n$ is also \mathfrak{g}_2 -invariant.

- Prop. If Σ is a local homogeneous subset of TKⁿ and sym(Σ) contains a transitive Lie algebra (L, I) which belongs to a bigger transitive Lie algebra (L̃, Ĩ) and the central part of these two transitive Lie algebras are the same or geometrically-same then sim(Σ) also contains (L̃, Ĩ).
- Definition of geometrically-same

Two Lie subalgebras $\mathfrak{g}_1, \mathfrak{g}_2 \subset \mathfrak{gl}_n(\mathbb{K})$, viewed as <u>linear vector fields on $T_0\mathbb{K}^n$ </u> (and therefore defined up to conjugacy rather then isomorphisms) are geometrically same if any \mathfrak{g}_1 -invariant subset of $T_0\mathbb{K}^n$ is also \mathfrak{g}_2 -invariant.

For example sl_n(K) is geometrically the same as gl_n(K) since the singular locus of sl_n(K), defined as the set of points in T₀Kⁿ at which dimsl_n(K) is less then n, is simply {0}.

- Prop. If Σ is a local homogeneous subset of TKⁿ and sym(Σ) contains a transitive Lie algebra (L, I) which belongs to a bigger transitive Lie algebra (L̃, Ĩ) and the central part of these two transitive Lie algebras are the same or geometrically-same then sim(Σ) also contains (L̃, Ĩ).
- Definition of geometrically-same

Two Lie subalgebras $\mathfrak{g}_1, \mathfrak{g}_2 \subset \mathfrak{gl}_n(\mathbb{K})$, viewed as <u>linear vector fields on $T_0\mathbb{K}^n$ </u> (and therefore defined up to conjugacy rather then isomorphisms) are geometrically same if any \mathfrak{g}_1 -invariant subset of $T_0\mathbb{K}^n$ is also \mathfrak{g}_2 -invariant.

- For example sl_n(K) is geometrically the same as gl_n(K) since the singular locus of sl_n(K), defined as the set of points in T₀Kⁿ at which dimsl_n(K) is less then n, is simply {0}.
- There are many other examples with much more involved subalgebras of gl(n) defined up to conjugacy.

▶ The big problem in terms of transitive Lie algebras

- The big problem in terms of transitive Lie algebras
- Def. A transitive Lie algebra is geometrically-maximal if it is not contained in a bigger transitive Lie algebra with the same or geometrically same central part.

Prop. A transitive Lie algebra is the symmetry algebra of a local homogeneous subset of $T\mathbb{R}^n$ if and only if it is geometrically-maximal.

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

- The big problem in terms of transitive Lie algebras
- Def. A transitive Lie algebra is geometrically-maximal if it is not contained in a bigger transitive Lie algebra with the same or geometrically same central part.

Prop. A transitive Lie algebra is the symmetry algebra of a local homogeneous subset of $T\mathbb{R}^n$ if and only if it is geometrically-maximal.

 Problem. To find geometrically transitive Lie algebras which do <u>not</u> have the splitting property.

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

Thanks to Amos Nevo for a number of conversations introducing me to the magic of Lie algebras and proving for me several lemmas I could not prove myself.

Thanks to Uri Bader who answered many my questions.

(日)

 Thanks to Amos Nevo for a number of conversations introducing me to the magic of Lie algebras and proving for me several lemmas I could not prove myself.
 Thanks to Uri Bader who answered many my questions.

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

► Thanks to the listeners.

Any comment will be strongly appreciated.

This talk is published in my homepage.