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Question: which local homogeneous subsets S of the tangent
bundle to an n-manifold M are induced by a subset of an
n-dimensional Lie algebra and which are not?

Homogeneous: the same germ (wrt to a point in M, not wrt to a
tangent vector) at any two points p1, p2 ∈ M an analytic
(holomorphic) local diffeo Φ : (M, p1)→ (M, p2):
Φ∗,xSx = SΦ(x), Sx = S ∩ TxM, x close to p1.

Local: with respect to a point in M (not a tangent vector)
so that M = (Rn, 0) or M = (Cn, 0)

(if Cn: holomorphic tangent bundle)



Motivation for the question
personal, from the “(2,5) variables paper” by E. Cartan

Take any 5-dim Lie algebra real or complex Lie algebra g and a
2-plane (2-dim subspace) P ⊂ g . Push P forward by left-invariant
vector fields to a neighbourhood of id of the Lie group of g to
obtain a homogeneous 2-distribution germ D on TR5 or ThC5

whose symmetry algebra obviously contains g, but might be bigger.

In order that D has max growth vector (2,3,5) the plane P must
be generating: P = span(v1, v2),
g = span{v1, v2, [v1, v2], [v1, [v1, v2]], [v2, [v1, v2]}

One can expect that taking in this construction the most
symmetric (P, g) (the biggest group of automorphisms) we obtain
the most symmetric (2,3,5) distribution germ D.

the most symmetric (P, g) is the graded nilpotent Lie algebra
g: [a1, a2] = a3, [a1, a3] = a4, [a2, a3] = a5, other [a1, aj ] = 0,
and any generating 2-plane in g

(all such P are automorphic to span{a1, a2}).



Take any 5-dim Lie algebra real or complex Lie algebra g and a
generating 2-plane P ⊂ g . Push P forward to by left-invariant
vector fields a nbhd of id of the Lie group of g to obtain a
homogeneous (2,3,5)-distribution germ D on TR5 or ThC5 whose
symmetry algebra obviously contains g, but might be bigger. We
will say that D is induced by (P, g).

Most known result of the “(2,5) variables paper”. Let g be the
graded nilpotent (2,3,5) Lie algebra and let P ⊂ g be a generating
plane. The homogeneous (2,3,5) distribution germ D induced by
(P, g) is the most symmetric: its symmetry algebra is the 1-4dim
Lie algebra g2. For this D and for this D only (up to diffeos) the
Cartan tensor is identically zero.

Question. Is ANY homogeneous (2,3,5) distribution germ germ
induced by some (P, g) for some 5-dim Lie algebra g and some
generating 2-plane P ⊂ g?

Equivalent question. Is it true that any homogeneous (2,3,5)
distribution germ can be described by two vector fields generating
a 5-dim Lie algebra?



Take any 5-dim Lie algebra real or complex Lie algebra g and a
generating 2-plane P ⊂ g . Push P forward by left-invariant vector
fields to a nbhd of id of the Lie group of g to obtain a
homogeneous (2,3,5)-distribution germ D on TR5 or ThC5 whose
symmetry algebra obviously contains g, but might be bigger. We
will say that D is induced by (P, g).

Question. Is ANY homogeneous (2,3,5) distribution germ germ
induced by some (P, g) for some 5-dim Lie algebra g and some
generating 2-plane P ⊂ g?

Equivalent question. Is it true that any homogeneous (2,3,5)
distribution germ can be described by two vector fields generating
a 5-dim Lie algebra?

Equivalent question. Is it true that the symmetry algebra of any
homogeneous (2,3,5) distribution germ has the splitting property?

Answer(M.Zh). Over C: yes, over R not always.



The splitting property of a transitive Lie algebra of vector fields.

The symmetry algebra of any local homogeneous subset of TRn or
ThCn, in particular homogeneous (2,3,5) distibution germ on Rn or
Cn is a transitive Lie algebra A of vector fields germs at 0:
dimA(0) = n
(i.e. A contains vector fields ∂

∂xi
+ h.o.t., i = 1, ..., n).

The isotropy subalgebra of a transitive Lie algebra A of vector field
germs at 0 is {V ∈ A : V (0) = 0}.

The splitting property of of a transitive Lie algebra A of vector
field germs at 0 ∈ Kn, K = R,C, with the isotropy subalgebra I:

A = I + C (direct sum of vector spaces)

for some n-dimensional Lie algebra C,
i.e. I admits a Lie algebra vector-space complement in A.

(We do not require [I, C] = 0).



Question. Is ANY homogeneous (2,3,5) distribution germ germ
induced by some (P, g) for some 5-dim Lie algebra g and some
generating 2-plane P ⊂ g?

Equivalent question. Is it true that any homogeneous (2,3,5)
distribution germ can be described by two vector fields generating
a 5-dim Lie algebra?

Equivalent question. Is it true that the symmetry algebra of any
homogeneous (2,3,5) distribution germ has the splitting property?

Answer(M.Zh). Over C: yes, over R not always.

To get this answered I checked the splitting property of all possible
symmetry algebras of dim > 5 of local homogeneous (2,3,5)
distributions (for dim =5 the splitting property is obvious).

It required intensive study the second, less known part of the
“(2,5) variables paper” .



Homogeneous (2,3,5)-distributions with a symmetry algebra of dim
> 5 are a part of (2,3,5) distributions with constant and symmetric
Cartan tensor.

Constant and symmetric Cartan tensor: the second part of the
“(2,5) variables paper”. Cartan analyzed the tensors x2

1 x2
2 and x4

1

which are all possible symmetric Cartan tensors over C (x3
1 x2 is not

realizable).

Over R: ±x2
1 x2

2 ,±(x2
1 + x2

2 )2,±x4
1 )

Cartan’s results plus a certain work to understand and extend them
lead to the explicit classification of the symmetry algebras of
dimension > 5 of homogeneous (2,3,5) distribution germs. For
each of them the splitting property holds over C, for some of them
it does not hold over R.



Classification of symmetry algebras of dim > 5 of
local homogeneous (2,3,5) distributions, on top of g2

• four -1parameter families S6
i ,λ, λ 6= λ∗ of 6-dim semi-simple

symmetry algebras, λ is a modulus wrt diffeos, isomorphic to

sl2 ⊕ sl2, sl2 ⊕ so3, so3,1, so3 ⊕ so3,

• two -1parameter families S7
i ,λ, λ 6= λ∗ of solvable 7-dim

symmetry algebra, λ is a modulus wrt isomorphisms.

The symmetry algebra S6
4,λ, isomorphic to so3 ⊕ so3, is the

symmetry algebra for two rolling balls,
the case λ = λ∗ (when it is not realizable, leads to g2) corresponds
to the ratio of radii 1 : 3 (R. Bryant).



Thm. Let n = 5. Any local homogeneous subset S ⊂ ThCn which
is a (2,3,5) distribution is induced by (U, g) where g is some n-dim
complex Lie algebra and U is a subset of g which is a generating
2-plane in g.

Equivalent statement: the symmetry algebra of S has the splitting
property.

Question (French style). Is it possible to remove the red color in
this theorem?

Question. Is it true that any local homogeneous subset
S ⊂ ThCn is induced by some subset of some complex
n-dimensional complex Lie algebra?

Equivalent question: is it true that the symmetry algebra of S has
the splitting property?



Question. Is it true that any local homogeneous subset
S ⊂ ThCn is induced by some subset of some complex
n-dimensional complex Lie algebra?

Equivalent question: is it true that the symmetry algebra of S has
the splitting property?

Here S is arbitrary, including potato field,
but for potato field and any “non-symmetric” S ,
namely S such that S ∩ T0Cn, and consequently S ∩ TpCn for p
close to 0 has no infinitesimal symmetries in gln,
the answer is always yes by the following reason:

the splitting property holds because the central part of the
symmetry algebra is {0}.
The central part of a transitive Lie algebra A of vector field germs
at 0 is, by def, the Lie algebra of the linearizations at 0 of the
vector fields in the isotropy subalgebra of A.

General property of transitive Lie algebras A of vector field germs
on Rn or Cn: if the central part of A is {0} then A is
n-dimensional (and the splitting property is obvious).



Question. Is it true that any local homogeneous subset S ⊂ ThCn

is induced by some subset of some complex n-dimensional complex
Lie algebra?

Equivalent question: is it true that the symmetry algebra of S has
the splitting property?

Thm.

For n = 2: yes

For n ≥ 4: no, a counterexample can be found already within
affine line fields

For n = 3 the only counterexample is the symmetry algebra
spanned by the vector fields

∂

∂x1
, ex1

∂

∂x2
, ex2f (x1)

∂

∂x3

where f (x1) is an arbitrary function. It is the symmetry algebra of
(for example) the couple consisting of semi-integrable affine plane
field and transversal semi-integrable affine line field.



Affine plane field in ThC3, TR3

in each tangent space an affine plane ( a plane which does not
contain 0).

Can be described by α = 1 where α is a -1form

Homogeneous:

integrable: dα ≡ 0,

semi-integrable: dα(0) 6= 0, α ∧ dα ≡ 0

contact: (α ∧ dα)(0) 6= 0

Affine line fields in ThCn, TRn:

in each tangent space a straight line which does not contain 0.

Can be described by V + (W ), V ,W are vector fields

Homogeneous:

integrable: [V ,W ] ≡ 0 mod (W )

semi-integrable: [V ,W ] ≡ θV mod(W ), θ 6= 0

contact: [V ,W ](0) 6∈ span{V (0),W (0)}
(there are many types of contact)



Affine line fields on Cn, n ≥ 4

which are not induced by an affine line in any n- dim Lie algebra

It is the most degenerate of many types of homogeneous contact
affine line fields. For this type the symmetry algebra is
parameterized by one function of one variable and it is isomorphic
to the Lie algebra Vect(1) of vector fields on C.

The Lie algebra Vect(1) does not contain subalgebras of dim ≥ 4,
therefore the splitting is impossible.



Question. Which local homogeneous subset Σ of TRn with
n = 2, 3 are induced by some subset of some real n-dimensional
complex Lie algebra?

Equivalent question: is it true that the symmetry algebra of Σ has
the splitting property?

Thm. For n = 2 the only counterexample is the symmetry algebra
(so3, I) of a Riemannian metric (field of ellipses) with constant
positive curvature.

Here I denotes a direction (1-dim subspace) in so3 corresponding
to the isotropy subalgebra (over R all directions are automorphic
so that the choice of I is irrelevant).

It is a counterexample since so3, unlike sl2, does not contain 2-dim
subalgebras, therefore the splitting is impossible.



For finite dimensional transitive Lie algebras of vector fields it is
worth to use the Nagano-Sussmann principle (in combination with
geometry and normal forms)

It allows to replace any finite-dim transitive Lie algebra of vector
fields by a abstract transitive Lie algebra which is (A, I) where A
is a Lie algebra and I is a subalgebra of A such that I contains no
non-trivial ideals of the whole A.

The subalgebra I is the isotropy subalgebra of the transitive Lie
algebra of vector fields.

Thm. (H. Sussmann) Two transitive Lie algebras A1,A2 of vector
fields germs, with isotropy subalgebras I1, I2 are diffeomorphic if
and only if (A1, I1) and (A2, I2) are isomorphic.



For TR2 the (so3, I) is the only counterexample. For all other
symmetry algebras of local homogeneous subsets of TR2 we have
the splitting property.

Simplest examples
Example: the symmetry algebra of a field of ellipses in R2

(=Riemannina metric) with negative constant curvature is (sl2, Ie)
where Ie is elliptic direction. We have the splitting
sl2 = Ie + (R n R) where R n R is non-Abelian 2-dim Lie algebra.
Therefore:

• a Riemannian metrics on R2 with constant negative curvature
can be identified with an ellipse in non-Abelian 2-dim Lie algebra

(the curvature is the parameter in the classification of ellipses wrt
automorphisms)



Example: the symmetry algebra of the field of hyperbolas in TR2

(=hyperbilic structure) with any non-zero constant curvature is
(sl2, Ih) where Ih is hyperbolic direction. We have the splitting
sl2 = Ih + (R n R) where R n R is non-Abelian 2-dim Lie algebra.
Therefore:

• a hyperbolic structure in TR2 with a constant non-zero
curvature can be identified with a hyperbola in non-Abelian 2-dim
Lie algebra A

(the curvature is the parameter in the classification of hyperbolas
wrt automorphisms; the cases that the hyperbola intersects or not
the line A2 distinguish positive and negative curvature.)



Question. Which local homogeneous subsets S ⊂ TR3 with are
induced by some subset of some real n-dimensional complex Lie
algebra?

Equivalent question: is it true that the symmetry algebra of S has
the splitting property?

We have the same counterexample as the only counterexample
over C, the symmetry algebra

∂

∂x1
, ex1

∂

∂x2
, ex2f (x1)

∂

∂x3
.

Other counterexamples?

For n = 3 the only other counterexamples are

• one of 6 “natural liftings” from R2 to R3 of (so3, I) on R2

• The Lie algebra (R n h1, I) where h1 is the Heisenberg Lie
algebra, the semi-direct product R n h1 is defined by a 2× 2
matrix with non-real eigenvalues, and the -1dim isotropy
subalgebra I ⊂ R n h1 has zero-component in R.



Liftings from R2 to R3

Given a Lie algebra A of vector fields on R2(x1, x2) define a Lie
algebra Â as the span of vector fields in A and the vector fields:

• L-lifting: h(x1, x2, x3) ∂
∂x3

• L∗-lifting: h(x1, x2) ∂
∂x3

• LP-lifting: h(x3) ∂
∂x3

• L∗P∗-lifting: ∂
∂x3

• P-lifting: h1(x3)V and h2(x3) ∂
∂x3

, V ∈ A

• P∗-lifting: h1(x3)V and ∂
∂x3

In P-lifting and P∗-lifting h1(x3) does not depend on V ∈ A



In order to obtain these results I classified, wrt diffeos, all possible
symmetry algebras of local homogeneous sybsets of TKn with
n = 2, 3, K = C,R.

We have:

1. Symmetry algebras of local homogeneous subsets of Kn

2. Transitive Lie algebras of vector fields on Kn

3. Lie algebras of vector fields on Kn.

Certainly 1 ⊂ 2 ⊂ 3.

Classification of 3.:
for n = 2 available:
K = C: S. Lie
K = R: S.Lie + many revisions, the last in 1990 by
Gonzales-Lopez, Kamran, Olver.

for n = 3: probably not doable



1. Symmetry algebras of local homogeneous subsets of Kn

2. Transitive Lie algebras of vector fields on Kn

3. Lie algebras of vector fields on Kn.

Certainly 1 ⊂ 2 ⊂ 3.

Classification of 2. (which is a small part of 3.):
for n = 3: probably not available, probably doable, around 1000
normal forms

Claim. 1. is much less of 2. (for n = 3: around 1/5 of 2.)

The first reason why 1. is much less than 2
Prop. If two transitive Lie algebras A1 ⊂ A2 have the same central
part then A1 cannot be the symmetry algebra of any local
homogeneous subset of the tangent bundle: if the infinitesimal
symmetries include A1 they also include A2.

The second reason why 1. is much less than 2
• In the proposition above the words have the same central part
can be replaced by have the central parts with the same geometry



Central parts with the same geometry

In algebraic terms, the central part of a transitive Lie algebra of
vector fields on Kn is a representation in gln of an arbitrary Lie
algebra which admits such representation.

Equivalently, it is a Lie algebra of linear vector fields V on T0Kn,
V (0) = 0.

The central parts C1 ⊂ C2 have the same geometry if any
C1-invariant subset of T0Kn is also C2-invariant.

Trivial example:
sln ⊂ gln and gln have the same geometry.

Example: fix λ1, λ2 6= 0.

span


∗ ∗ 0

0 0 0
0 ∗ 0

 ,

0 0 0
0 λ1 0
0 0 λ2

 same geometry as

∗ ∗ 0
0 ∗ 0
0 ∗ ∗


There is a LOT of other examples.



Finite-dim symmetry algebras of dim ≥ 3
of local homogeneous subset of TR2:

• translation symmetry algebra:

span

{
∂

∂x1
,

∂

∂x2
, (a11x1 + a12x2)

∂

∂x1
+ (a11x1 + a12x2)

∂

∂x2

}
where (aij) is a non-singular matrix

• symmetry algebra of a Riemannian metric (field of ellipses) with
constant negative curvature (sl2, Ie)

• symmetry algebra of a field of hyperbolas with constant
non-zero curvature (sl2, Ih)

• symmetry algebra of a Riemannian metric (field of ellipses) with
constant positive curvature (so3, I)



Infinite-dim symmetry algebras of dim ≥ 3
of local homogeneous subset of TR2:

a symmetry algebra of:

• a line field: f (x1) ∂
∂x1

+ g(x1, x2) ∂
∂x2

• a vector field: f (x1) ∂
∂x1

+ g(x1) ∂
∂x2

• integrable affine line field: c ∂
∂x1

+ f (x1, x2) ∂
∂x2

, c ∈ R

• non-integrable affine line field: f (x1) ∂
∂x1

+ f ′(x1) ∂
∂x2

• two transversal line fields: f (x1) ∂
∂x1

+ g(x2) ∂
∂x2

• integrable affine line field and a vector field parallel to it:
f (x1) ∂

∂x1
+ c ∂

∂x2
, c ∈ R

• integrable affine line field and a vector field transversal to it
(= integrable field of affine semi-lines):
f (x2) ∂

∂x1
+ c ∂

∂x2
, c ∈ R



Examples of symmetry algebras
of local homogeneous subsets of TR3

1. f (x1) ∂
∂x1

+ f ′(x1) ∂
∂x2

+ (f ′′(x1)− x3f
′(x1)) ∂

∂x3

2. f (x1) ∂
∂x1

+ (f ′′(x1) + x2f
′(x1)) ∂

∂x2
+

+ (f ′′′(x1) + x2f
′′(x1) + 2f ′(x1)) ∂

∂x3

Both 1. and 2. are isomorphic to Vect(1), the Lie algebra of vector
fields on R, but, after applying the isomorphisms, the isotropy
subalgebra are as follows:

for 1. I1 =
{
f (x) ∂

∂x : f (0) = f ′(0) = f ′′(0) = 0
}

for 2. I2 =
{
f (x) ∂

∂x : f (0) = f ′′(0) = f ′′′(0) = 0
}

and (Vect(1), I1) and (Vect(1), I2) are not isomorphic.



1. f (x1) ∂
∂x1

+ f ′(x1) ∂
∂x2

+ (f ′′(x1)− x3f
′(x1)) ∂

∂x3

2. f (x1) ∂
∂x1

+ (f ′′(x1) + x2f
′(x1)) ∂

∂x2
+

+ (f ′′′(x1) + x2f
′′(x1) + 2f ′(x1)) ∂

∂x3

The way to obtain these and other ∞-dim symmetry algebras is to
classify central parts and to work with invariant objects defined by
the central part.

Central part of 1.:

0 0 0
0 0 0
∗ 0 0

, of 2.:

1 0 0
0 −1 0
∗ 0 −2


1. is the symmetry algebra of one of two types of homogeneous
contact affine line field.

2. is the symmetry algebra of a couple of a contact plane field and
transversal line field, one of non-flat types:
dx2 − x3dx1 = 0, ( ∂

∂x2
+ x2

∂
∂x3

).



The classification of symmetry algebras
of local homogeneous subsets of TR3 required:

Classification of all realizable central parts
(realizable representations of Lie algebras in gl3)

(a) without rank 1 matrices

(b) containing rank 1 matrices

In the case (a) the central part is either not prolongable or has a
finite-dim prolongation
(proved by Ottazi and Waphurst, 2009)
and consequently the symmetry algebra is finite-dimensional.

Here prolongation of the central part: classical-before-Tanaka, the
Singer-Sternberg prolongation.



Example. The prolongation of the representation of gl2 in gl3 given
by a c 0

d a+b
2 c

0 d b


is

(so3,2, I)

which has the biggest dimension 10 within finite-dim symmetry
algebras of local homogeneous subsets of TR3.

This subset of TR3 is the cone x2
1 + x2

2 − x2
3 = 0 in T0R3

translated to TR3 by ∂
∂x1
, ∂
∂x2
, ∂
∂x3

.

The fact that the symmetry algebra of this field of cones is so3,2 is
classical. The complexification of the symmetry algebra is
diffeomorphic to the complexification of the symmetry algebra of
flat conformal structure on R3.



Required:

Computation of the prolongations and geometric interpretation of
results.

Solving non-trivial problems
(requiring Cartan method or a posteriori equivalent tools)
on classification of homogeneous couples or triples including:

• two contact plane fields

• contact plane field and transversal line field

• vector field in a contact plane field

the classical results on the classification of homogeneous couples
consisting of two line fields which span a contact plane field =
classification of ODEs y ′′ = f (x , y , y ′).



Required:

Liftings from K2 to K3 of transitive Lie algebras. On top of
L, L∗, L∗P∗, LP,P,P∗ liftings: contact LP lifting which gives a
subalgebra of the symmetry algebra of a couple consisting of a
contact plane field and a transversal line field.

Example.
The symmetry algebra of the couple of two line fields which span a
contact plane field, the “flat” case, is

(sl3, h1) : sl3 =

a ∗ ∗
∗ b ∗
∗ ∗ −(a + b)

 , h1 =

0 0 0
∗ 0 0
∗ ∗ 0


and it is the contact LP lifting of

sl3 = span
{ ∂

∂x1
,

∂

∂x2
, x1

∂

∂x1
, x1

∂

∂x2
, x2

∂

∂x1
, x2

∂

∂x2
,

x1

(
x1

∂

∂x1
+ x2

∂

∂x2

)
, x2

(
x1

∂

∂x1
+ x2

∂

∂x2

)}
.

which is the Lie algebra of the group of projective transformations.



Required:

Distinguishing finite-dim and infinite-dim symmetry algebras.

The symmetry algebras whose central parts contain no rank 1
matrices are finite-dim. I had to distinguishing the cases that the
symmetry algebra whose central part contains rank 1 matrices is
finite-dim or infinite-dim.

Thm. A symmetry algebra of local homogeneous subset of TR3

whose central part contains rank 1 matrices is finite dimensional if
and only if it is a subalgebra of the symmetry algebra of “flat”
couple of two line fields in TR3 which span a contact plane field:
the symmetry algebra (sl3, h1) given in the previous page.


